Loading…

The Berry Phase Rectification Tensor and The Solar Rectification Vector

We introduce an operational definition of the Berry Phase Rectification Tensor as the second-order change of polarization of a material in response to an ideal short pulse of an electric field. Under time-reversal symmetry this tensor depends exclusively on the Berry phases of the Bloch bands and no...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-08
Main Authors: Matsyshyn, O, Dey, Urmimala, Sodemann, I, Sun, Y
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Matsyshyn, O
Dey, Urmimala
Sodemann, I
Sun, Y
description We introduce an operational definition of the Berry Phase Rectification Tensor as the second-order change of polarization of a material in response to an ideal short pulse of an electric field. Under time-reversal symmetry this tensor depends exclusively on the Berry phases of the Bloch bands and not their energy dispersions, making it an intrinsic property to each material which contains contributions from both the inter-band shift currents and the intra-band Berry Curvature Dipole. We also introduce the Solar Rectification Vector as a technologically relevant figure of merit for a bulk photo-current generation under ideal black-body radiation in analogy with the classic solar cell model of Shockley and Queisser. We perform first-principles calculations of the Berry Phase Rectification Tensor and the Solar Rectification Vector for the Weyl semimetal TaAs and the insulator LiAsSe2 which features large shift currents close to the peak of solar radiation intensity.
doi_str_mv 10.48550/arxiv.2008.05484
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2434146623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434146623</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-7973eaad9a8f9df959048bbc7bd12f3b1d065fff1202d4f48ad5bd7d77d46ab53</originalsourceid><addsrcrecordid>eNpdj8FKAzEURYMgWGo_wF3A9Ywvycsks9SiVSgoOrgtL5OETikTTaaif29FV64uFw7nchm7EFCj1RquKH8OH7UEsDVotHjCZlIpUVmU8owtStkBgGyM1FrN2KrbBn4Tcv7iT1sqgT-Hfhri0NM0pJF3YSwpcxo9_wFf0p7yP-T12FI-Z6eR9iUs_nLOurvbbnlfrR9XD8vrdUVaqsq0RgUi35KNrY-tbgGtc71xXsionPDQ6BijkCA9RrTktfPGG-OxIafVnF3-at9yej-EMm126ZDH4-JGokKBTXM8-w2oRU2Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434146623</pqid></control><display><type>article</type><title>The Berry Phase Rectification Tensor and The Solar Rectification Vector</title><source>Publicly Available Content Database</source><creator>Matsyshyn, O ; Dey, Urmimala ; Sodemann, I ; Sun, Y</creator><creatorcontrib>Matsyshyn, O ; Dey, Urmimala ; Sodemann, I ; Sun, Y</creatorcontrib><description>We introduce an operational definition of the Berry Phase Rectification Tensor as the second-order change of polarization of a material in response to an ideal short pulse of an electric field. Under time-reversal symmetry this tensor depends exclusively on the Berry phases of the Bloch bands and not their energy dispersions, making it an intrinsic property to each material which contains contributions from both the inter-band shift currents and the intra-band Berry Curvature Dipole. We also introduce the Solar Rectification Vector as a technologically relevant figure of merit for a bulk photo-current generation under ideal black-body radiation in analogy with the classic solar cell model of Shockley and Queisser. We perform first-principles calculations of the Berry Phase Rectification Tensor and the Solar Rectification Vector for the Weyl semimetal TaAs and the insulator LiAsSe2 which features large shift currents close to the peak of solar radiation intensity.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2008.05484</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Black body radiation ; Dipoles ; Electric fields ; Figure of merit ; First principles ; Mathematical analysis ; Photovoltaic cells ; Radiation ; Solar cells ; Solar radiation ; Tensors</subject><ispartof>arXiv.org, 2020-08</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2434146623?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Matsyshyn, O</creatorcontrib><creatorcontrib>Dey, Urmimala</creatorcontrib><creatorcontrib>Sodemann, I</creatorcontrib><creatorcontrib>Sun, Y</creatorcontrib><title>The Berry Phase Rectification Tensor and The Solar Rectification Vector</title><title>arXiv.org</title><description>We introduce an operational definition of the Berry Phase Rectification Tensor as the second-order change of polarization of a material in response to an ideal short pulse of an electric field. Under time-reversal symmetry this tensor depends exclusively on the Berry phases of the Bloch bands and not their energy dispersions, making it an intrinsic property to each material which contains contributions from both the inter-band shift currents and the intra-band Berry Curvature Dipole. We also introduce the Solar Rectification Vector as a technologically relevant figure of merit for a bulk photo-current generation under ideal black-body radiation in analogy with the classic solar cell model of Shockley and Queisser. We perform first-principles calculations of the Berry Phase Rectification Tensor and the Solar Rectification Vector for the Weyl semimetal TaAs and the insulator LiAsSe2 which features large shift currents close to the peak of solar radiation intensity.</description><subject>Black body radiation</subject><subject>Dipoles</subject><subject>Electric fields</subject><subject>Figure of merit</subject><subject>First principles</subject><subject>Mathematical analysis</subject><subject>Photovoltaic cells</subject><subject>Radiation</subject><subject>Solar cells</subject><subject>Solar radiation</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdj8FKAzEURYMgWGo_wF3A9Ywvycsks9SiVSgoOrgtL5OETikTTaaif29FV64uFw7nchm7EFCj1RquKH8OH7UEsDVotHjCZlIpUVmU8owtStkBgGyM1FrN2KrbBn4Tcv7iT1sqgT-Hfhri0NM0pJF3YSwpcxo9_wFf0p7yP-T12FI-Z6eR9iUs_nLOurvbbnlfrR9XD8vrdUVaqsq0RgUi35KNrY-tbgGtc71xXsionPDQ6BijkCA9RrTktfPGG-OxIafVnF3-at9yej-EMm126ZDH4-JGokKBTXM8-w2oRU2Z</recordid><startdate>20200812</startdate><enddate>20200812</enddate><creator>Matsyshyn, O</creator><creator>Dey, Urmimala</creator><creator>Sodemann, I</creator><creator>Sun, Y</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200812</creationdate><title>The Berry Phase Rectification Tensor and The Solar Rectification Vector</title><author>Matsyshyn, O ; Dey, Urmimala ; Sodemann, I ; Sun, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-7973eaad9a8f9df959048bbc7bd12f3b1d065fff1202d4f48ad5bd7d77d46ab53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Black body radiation</topic><topic>Dipoles</topic><topic>Electric fields</topic><topic>Figure of merit</topic><topic>First principles</topic><topic>Mathematical analysis</topic><topic>Photovoltaic cells</topic><topic>Radiation</topic><topic>Solar cells</topic><topic>Solar radiation</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Matsyshyn, O</creatorcontrib><creatorcontrib>Dey, Urmimala</creatorcontrib><creatorcontrib>Sodemann, I</creatorcontrib><creatorcontrib>Sun, Y</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsyshyn, O</au><au>Dey, Urmimala</au><au>Sodemann, I</au><au>Sun, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Berry Phase Rectification Tensor and The Solar Rectification Vector</atitle><jtitle>arXiv.org</jtitle><date>2020-08-12</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We introduce an operational definition of the Berry Phase Rectification Tensor as the second-order change of polarization of a material in response to an ideal short pulse of an electric field. Under time-reversal symmetry this tensor depends exclusively on the Berry phases of the Bloch bands and not their energy dispersions, making it an intrinsic property to each material which contains contributions from both the inter-band shift currents and the intra-band Berry Curvature Dipole. We also introduce the Solar Rectification Vector as a technologically relevant figure of merit for a bulk photo-current generation under ideal black-body radiation in analogy with the classic solar cell model of Shockley and Queisser. We perform first-principles calculations of the Berry Phase Rectification Tensor and the Solar Rectification Vector for the Weyl semimetal TaAs and the insulator LiAsSe2 which features large shift currents close to the peak of solar radiation intensity.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2008.05484</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2434146623
source Publicly Available Content Database
subjects Black body radiation
Dipoles
Electric fields
Figure of merit
First principles
Mathematical analysis
Photovoltaic cells
Radiation
Solar cells
Solar radiation
Tensors
title The Berry Phase Rectification Tensor and The Solar Rectification Vector
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Berry%20Phase%20Rectification%20Tensor%20and%20The%20Solar%20Rectification%20Vector&rft.jtitle=arXiv.org&rft.au=Matsyshyn,%20O&rft.date=2020-08-12&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2008.05484&rft_dat=%3Cproquest%3E2434146623%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-7973eaad9a8f9df959048bbc7bd12f3b1d065fff1202d4f48ad5bd7d77d46ab53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2434146623&rft_id=info:pmid/&rfr_iscdi=true