Loading…

Synthesis of Therminol-based plasmonic nanofluids with core/shell nanoparticles and characterization of their absorption/scattering coefficients

Direct-absorption solar collectors (DASCs) that employ plasmonic nanofluids with engineered optical properties have drawn much attention for solar thermal applications. One of the major issues limiting further development of DASCs is the long-term dispersion of nanoparticles within the plasmonic nan...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy materials and solar cells 2020-06, Vol.209, p.110442, Article 110442
Main Authors: Lee, Ryeri, Kim, Joong Bae, Qin, Caiyan, Lee, Heon, Lee, Bong Jae, Jung, Gun Young
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-5be7dfc829b850eb69d22267f61e96226c0dac6da4785f24ca932d3315e10c663
cites cdi_FETCH-LOGICAL-c334t-5be7dfc829b850eb69d22267f61e96226c0dac6da4785f24ca932d3315e10c663
container_end_page
container_issue
container_start_page 110442
container_title Solar energy materials and solar cells
container_volume 209
creator Lee, Ryeri
Kim, Joong Bae
Qin, Caiyan
Lee, Heon
Lee, Bong Jae
Jung, Gun Young
description Direct-absorption solar collectors (DASCs) that employ plasmonic nanofluids with engineered optical properties have drawn much attention for solar thermal applications. One of the major issues limiting further development of DASCs is the long-term dispersion of nanoparticles within the plasmonic nanofluids, which should be sustainable at high-temperature conditions. In this research, we propose surface-modified metal@SiO2 core/shell nanoparticles (CSNPs) to improve the dispersion stability and tune the absorption coefficient of nanofluids. The Au@SiO2 and Ag@SiO2 CSNPs are synthesized using a low-temperature two-step solution process. The plasmonic nanofluids with the synthesized metal@SiO2 CSNPs exhibit excellent dispersion stability of 93.7% for Au@SiO2 and 100% for Ag@SiO2 in 6 months without using any surfactants, and they also present a good thermal stability after thermal exposure at 150 ∘C for an hour. The absorption and scattering coefficients of a plasmonic nanofluid should be known precisely to properly analyze its photothermal conversion. Here, we also develop a new measurement system to separately determine the absorption and scattering coefficients of nanofluid. The Au@SiO2 CSNPs-dispersed nanofluid is observed to exhibit an extremely low scattering albedo (i.e., ω=0.011) in comparison with that of the Ag@SiO2 CSNPs-dispersed nanofluid (ω=0.3).
doi_str_mv 10.1016/j.solmat.2020.110442
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434498976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024820300489</els_id><sourcerecordid>2434498976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-5be7dfc829b850eb69d22267f61e96226c0dac6da4785f24ca932d3315e10c663</originalsourceid><addsrcrecordid>eNp9UE1v1DAQtRBILKX_gIMlztn11zrxBQlVUJAqcaCcLceeNF5l7eDxgtpf0Z9MQjhzmtHM-9B7hLzjbM8Z14fTHvN0dnUvmFhOnCklXpAd71rTSGm6l2THjGgbJlT3mrxBPDHGhJZqR56_P6Y6AkakeaD3I5RzTHlqeocQ6Dw5POcUPU0u5WG6xID0d6wj9bnAAUeYpr-v2ZUa_QRIXQrUj644X6HEJ1djTqv0YhILdT3mMq-3A3pXV0h6WMRgGKKPkCq-Ja8GNyFc_5tX5MfnT_c3X5q7b7dfbz7eNV5KVZtjD20YfCdM3x0Z9NoEIYRuB83B6GXzLDivg1NtdxyE8s5IEaTkR-DMay2vyPtNdy755wWw2lO-lLRYWqGkUqYz7YpSG8qXjFhgsHOJZ1ceLWd27d6e7Na9Xbu3W_cL7cNGgyXBrwjF4prOQ4gFfLUhx_8L_AEueJM-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434498976</pqid></control><display><type>article</type><title>Synthesis of Therminol-based plasmonic nanofluids with core/shell nanoparticles and characterization of their absorption/scattering coefficients</title><source>Elsevier</source><creator>Lee, Ryeri ; Kim, Joong Bae ; Qin, Caiyan ; Lee, Heon ; Lee, Bong Jae ; Jung, Gun Young</creator><creatorcontrib>Lee, Ryeri ; Kim, Joong Bae ; Qin, Caiyan ; Lee, Heon ; Lee, Bong Jae ; Jung, Gun Young</creatorcontrib><description>Direct-absorption solar collectors (DASCs) that employ plasmonic nanofluids with engineered optical properties have drawn much attention for solar thermal applications. One of the major issues limiting further development of DASCs is the long-term dispersion of nanoparticles within the plasmonic nanofluids, which should be sustainable at high-temperature conditions. In this research, we propose surface-modified metal@SiO2 core/shell nanoparticles (CSNPs) to improve the dispersion stability and tune the absorption coefficient of nanofluids. The Au@SiO2 and Ag@SiO2 CSNPs are synthesized using a low-temperature two-step solution process. The plasmonic nanofluids with the synthesized metal@SiO2 CSNPs exhibit excellent dispersion stability of 93.7% for Au@SiO2 and 100% for Ag@SiO2 in 6 months without using any surfactants, and they also present a good thermal stability after thermal exposure at 150 ∘C for an hour. The absorption and scattering coefficients of a plasmonic nanofluid should be known precisely to properly analyze its photothermal conversion. Here, we also develop a new measurement system to separately determine the absorption and scattering coefficients of nanofluid. The Au@SiO2 CSNPs-dispersed nanofluid is observed to exhibit an extremely low scattering albedo (i.e., ω=0.011) in comparison with that of the Ag@SiO2 CSNPs-dispersed nanofluid (ω=0.3).</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2020.110442</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Absorption ; Absorptivity ; Albedo ; Core-shell particles ; Core/shell nanoparticle ; Dispersion ; Dispersion stability ; Gold ; High temperature ; Low temperature ; Nanofluids ; Nanoparticles ; Optical properties ; Photothermal conversion ; Plasmonic nanofluid ; Plasmonics ; Pollutants ; Scattering and absorption coefficients ; Scattering coefficient ; Silicon dioxide ; Silver ; Solar collectors ; Solar heating ; Surfactants ; Synthesis ; Thermal stability</subject><ispartof>Solar energy materials and solar cells, 2020-06, Vol.209, p.110442, Article 110442</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-5be7dfc829b850eb69d22267f61e96226c0dac6da4785f24ca932d3315e10c663</citedby><cites>FETCH-LOGICAL-c334t-5be7dfc829b850eb69d22267f61e96226c0dac6da4785f24ca932d3315e10c663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Ryeri</creatorcontrib><creatorcontrib>Kim, Joong Bae</creatorcontrib><creatorcontrib>Qin, Caiyan</creatorcontrib><creatorcontrib>Lee, Heon</creatorcontrib><creatorcontrib>Lee, Bong Jae</creatorcontrib><creatorcontrib>Jung, Gun Young</creatorcontrib><title>Synthesis of Therminol-based plasmonic nanofluids with core/shell nanoparticles and characterization of their absorption/scattering coefficients</title><title>Solar energy materials and solar cells</title><description>Direct-absorption solar collectors (DASCs) that employ plasmonic nanofluids with engineered optical properties have drawn much attention for solar thermal applications. One of the major issues limiting further development of DASCs is the long-term dispersion of nanoparticles within the plasmonic nanofluids, which should be sustainable at high-temperature conditions. In this research, we propose surface-modified metal@SiO2 core/shell nanoparticles (CSNPs) to improve the dispersion stability and tune the absorption coefficient of nanofluids. The Au@SiO2 and Ag@SiO2 CSNPs are synthesized using a low-temperature two-step solution process. The plasmonic nanofluids with the synthesized metal@SiO2 CSNPs exhibit excellent dispersion stability of 93.7% for Au@SiO2 and 100% for Ag@SiO2 in 6 months without using any surfactants, and they also present a good thermal stability after thermal exposure at 150 ∘C for an hour. The absorption and scattering coefficients of a plasmonic nanofluid should be known precisely to properly analyze its photothermal conversion. Here, we also develop a new measurement system to separately determine the absorption and scattering coefficients of nanofluid. The Au@SiO2 CSNPs-dispersed nanofluid is observed to exhibit an extremely low scattering albedo (i.e., ω=0.011) in comparison with that of the Ag@SiO2 CSNPs-dispersed nanofluid (ω=0.3).</description><subject>Absorption</subject><subject>Absorptivity</subject><subject>Albedo</subject><subject>Core-shell particles</subject><subject>Core/shell nanoparticle</subject><subject>Dispersion</subject><subject>Dispersion stability</subject><subject>Gold</subject><subject>High temperature</subject><subject>Low temperature</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Optical properties</subject><subject>Photothermal conversion</subject><subject>Plasmonic nanofluid</subject><subject>Plasmonics</subject><subject>Pollutants</subject><subject>Scattering and absorption coefficients</subject><subject>Scattering coefficient</subject><subject>Silicon dioxide</subject><subject>Silver</subject><subject>Solar collectors</subject><subject>Solar heating</subject><subject>Surfactants</subject><subject>Synthesis</subject><subject>Thermal stability</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1v1DAQtRBILKX_gIMlztn11zrxBQlVUJAqcaCcLceeNF5l7eDxgtpf0Z9MQjhzmtHM-9B7hLzjbM8Z14fTHvN0dnUvmFhOnCklXpAd71rTSGm6l2THjGgbJlT3mrxBPDHGhJZqR56_P6Y6AkakeaD3I5RzTHlqeocQ6Dw5POcUPU0u5WG6xID0d6wj9bnAAUeYpr-v2ZUa_QRIXQrUj644X6HEJ1djTqv0YhILdT3mMq-3A3pXV0h6WMRgGKKPkCq-Ja8GNyFc_5tX5MfnT_c3X5q7b7dfbz7eNV5KVZtjD20YfCdM3x0Z9NoEIYRuB83B6GXzLDivg1NtdxyE8s5IEaTkR-DMay2vyPtNdy755wWw2lO-lLRYWqGkUqYz7YpSG8qXjFhgsHOJZ1ceLWd27d6e7Na9Xbu3W_cL7cNGgyXBrwjF4prOQ4gFfLUhx_8L_AEueJM-</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Lee, Ryeri</creator><creator>Kim, Joong Bae</creator><creator>Qin, Caiyan</creator><creator>Lee, Heon</creator><creator>Lee, Bong Jae</creator><creator>Jung, Gun Young</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200601</creationdate><title>Synthesis of Therminol-based plasmonic nanofluids with core/shell nanoparticles and characterization of their absorption/scattering coefficients</title><author>Lee, Ryeri ; Kim, Joong Bae ; Qin, Caiyan ; Lee, Heon ; Lee, Bong Jae ; Jung, Gun Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-5be7dfc829b850eb69d22267f61e96226c0dac6da4785f24ca932d3315e10c663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Absorptivity</topic><topic>Albedo</topic><topic>Core-shell particles</topic><topic>Core/shell nanoparticle</topic><topic>Dispersion</topic><topic>Dispersion stability</topic><topic>Gold</topic><topic>High temperature</topic><topic>Low temperature</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Optical properties</topic><topic>Photothermal conversion</topic><topic>Plasmonic nanofluid</topic><topic>Plasmonics</topic><topic>Pollutants</topic><topic>Scattering and absorption coefficients</topic><topic>Scattering coefficient</topic><topic>Silicon dioxide</topic><topic>Silver</topic><topic>Solar collectors</topic><topic>Solar heating</topic><topic>Surfactants</topic><topic>Synthesis</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Ryeri</creatorcontrib><creatorcontrib>Kim, Joong Bae</creatorcontrib><creatorcontrib>Qin, Caiyan</creatorcontrib><creatorcontrib>Lee, Heon</creatorcontrib><creatorcontrib>Lee, Bong Jae</creatorcontrib><creatorcontrib>Jung, Gun Young</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Ryeri</au><au>Kim, Joong Bae</au><au>Qin, Caiyan</au><au>Lee, Heon</au><au>Lee, Bong Jae</au><au>Jung, Gun Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Therminol-based plasmonic nanofluids with core/shell nanoparticles and characterization of their absorption/scattering coefficients</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>209</volume><spage>110442</spage><pages>110442-</pages><artnum>110442</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Direct-absorption solar collectors (DASCs) that employ plasmonic nanofluids with engineered optical properties have drawn much attention for solar thermal applications. One of the major issues limiting further development of DASCs is the long-term dispersion of nanoparticles within the plasmonic nanofluids, which should be sustainable at high-temperature conditions. In this research, we propose surface-modified metal@SiO2 core/shell nanoparticles (CSNPs) to improve the dispersion stability and tune the absorption coefficient of nanofluids. The Au@SiO2 and Ag@SiO2 CSNPs are synthesized using a low-temperature two-step solution process. The plasmonic nanofluids with the synthesized metal@SiO2 CSNPs exhibit excellent dispersion stability of 93.7% for Au@SiO2 and 100% for Ag@SiO2 in 6 months without using any surfactants, and they also present a good thermal stability after thermal exposure at 150 ∘C for an hour. The absorption and scattering coefficients of a plasmonic nanofluid should be known precisely to properly analyze its photothermal conversion. Here, we also develop a new measurement system to separately determine the absorption and scattering coefficients of nanofluid. The Au@SiO2 CSNPs-dispersed nanofluid is observed to exhibit an extremely low scattering albedo (i.e., ω=0.011) in comparison with that of the Ag@SiO2 CSNPs-dispersed nanofluid (ω=0.3).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2020.110442</doi></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2020-06, Vol.209, p.110442, Article 110442
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_journals_2434498976
source Elsevier
subjects Absorption
Absorptivity
Albedo
Core-shell particles
Core/shell nanoparticle
Dispersion
Dispersion stability
Gold
High temperature
Low temperature
Nanofluids
Nanoparticles
Optical properties
Photothermal conversion
Plasmonic nanofluid
Plasmonics
Pollutants
Scattering and absorption coefficients
Scattering coefficient
Silicon dioxide
Silver
Solar collectors
Solar heating
Surfactants
Synthesis
Thermal stability
title Synthesis of Therminol-based plasmonic nanofluids with core/shell nanoparticles and characterization of their absorption/scattering coefficients
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Therminol-based%20plasmonic%20nanofluids%20with%20core/shell%20nanoparticles%20and%20characterization%20of%20their%20absorption/scattering%20coefficients&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Lee,%20Ryeri&rft.date=2020-06-01&rft.volume=209&rft.spage=110442&rft.pages=110442-&rft.artnum=110442&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2020.110442&rft_dat=%3Cproquest_cross%3E2434498976%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-5be7dfc829b850eb69d22267f61e96226c0dac6da4785f24ca932d3315e10c663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2434498976&rft_id=info:pmid/&rfr_iscdi=true