Loading…
Synthesis of Therminol-based plasmonic nanofluids with core/shell nanoparticles and characterization of their absorption/scattering coefficients
Direct-absorption solar collectors (DASCs) that employ plasmonic nanofluids with engineered optical properties have drawn much attention for solar thermal applications. One of the major issues limiting further development of DASCs is the long-term dispersion of nanoparticles within the plasmonic nan...
Saved in:
Published in: | Solar energy materials and solar cells 2020-06, Vol.209, p.110442, Article 110442 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-5be7dfc829b850eb69d22267f61e96226c0dac6da4785f24ca932d3315e10c663 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-5be7dfc829b850eb69d22267f61e96226c0dac6da4785f24ca932d3315e10c663 |
container_end_page | |
container_issue | |
container_start_page | 110442 |
container_title | Solar energy materials and solar cells |
container_volume | 209 |
creator | Lee, Ryeri Kim, Joong Bae Qin, Caiyan Lee, Heon Lee, Bong Jae Jung, Gun Young |
description | Direct-absorption solar collectors (DASCs) that employ plasmonic nanofluids with engineered optical properties have drawn much attention for solar thermal applications. One of the major issues limiting further development of DASCs is the long-term dispersion of nanoparticles within the plasmonic nanofluids, which should be sustainable at high-temperature conditions. In this research, we propose surface-modified metal@SiO2 core/shell nanoparticles (CSNPs) to improve the dispersion stability and tune the absorption coefficient of nanofluids. The Au@SiO2 and Ag@SiO2 CSNPs are synthesized using a low-temperature two-step solution process. The plasmonic nanofluids with the synthesized metal@SiO2 CSNPs exhibit excellent dispersion stability of 93.7% for Au@SiO2 and 100% for Ag@SiO2 in 6 months without using any surfactants, and they also present a good thermal stability after thermal exposure at 150 ∘C for an hour. The absorption and scattering coefficients of a plasmonic nanofluid should be known precisely to properly analyze its photothermal conversion. Here, we also develop a new measurement system to separately determine the absorption and scattering coefficients of nanofluid. The Au@SiO2 CSNPs-dispersed nanofluid is observed to exhibit an extremely low scattering albedo (i.e., ω=0.011) in comparison with that of the Ag@SiO2 CSNPs-dispersed nanofluid (ω=0.3). |
doi_str_mv | 10.1016/j.solmat.2020.110442 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434498976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024820300489</els_id><sourcerecordid>2434498976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-5be7dfc829b850eb69d22267f61e96226c0dac6da4785f24ca932d3315e10c663</originalsourceid><addsrcrecordid>eNp9UE1v1DAQtRBILKX_gIMlztn11zrxBQlVUJAqcaCcLceeNF5l7eDxgtpf0Z9MQjhzmtHM-9B7hLzjbM8Z14fTHvN0dnUvmFhOnCklXpAd71rTSGm6l2THjGgbJlT3mrxBPDHGhJZqR56_P6Y6AkakeaD3I5RzTHlqeocQ6Dw5POcUPU0u5WG6xID0d6wj9bnAAUeYpr-v2ZUa_QRIXQrUj644X6HEJ1djTqv0YhILdT3mMq-3A3pXV0h6WMRgGKKPkCq-Ja8GNyFc_5tX5MfnT_c3X5q7b7dfbz7eNV5KVZtjD20YfCdM3x0Z9NoEIYRuB83B6GXzLDivg1NtdxyE8s5IEaTkR-DMay2vyPtNdy755wWw2lO-lLRYWqGkUqYz7YpSG8qXjFhgsHOJZ1ceLWd27d6e7Na9Xbu3W_cL7cNGgyXBrwjF4prOQ4gFfLUhx_8L_AEueJM-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434498976</pqid></control><display><type>article</type><title>Synthesis of Therminol-based plasmonic nanofluids with core/shell nanoparticles and characterization of their absorption/scattering coefficients</title><source>Elsevier</source><creator>Lee, Ryeri ; Kim, Joong Bae ; Qin, Caiyan ; Lee, Heon ; Lee, Bong Jae ; Jung, Gun Young</creator><creatorcontrib>Lee, Ryeri ; Kim, Joong Bae ; Qin, Caiyan ; Lee, Heon ; Lee, Bong Jae ; Jung, Gun Young</creatorcontrib><description>Direct-absorption solar collectors (DASCs) that employ plasmonic nanofluids with engineered optical properties have drawn much attention for solar thermal applications. One of the major issues limiting further development of DASCs is the long-term dispersion of nanoparticles within the plasmonic nanofluids, which should be sustainable at high-temperature conditions. In this research, we propose surface-modified metal@SiO2 core/shell nanoparticles (CSNPs) to improve the dispersion stability and tune the absorption coefficient of nanofluids. The Au@SiO2 and Ag@SiO2 CSNPs are synthesized using a low-temperature two-step solution process. The plasmonic nanofluids with the synthesized metal@SiO2 CSNPs exhibit excellent dispersion stability of 93.7% for Au@SiO2 and 100% for Ag@SiO2 in 6 months without using any surfactants, and they also present a good thermal stability after thermal exposure at 150 ∘C for an hour. The absorption and scattering coefficients of a plasmonic nanofluid should be known precisely to properly analyze its photothermal conversion. Here, we also develop a new measurement system to separately determine the absorption and scattering coefficients of nanofluid. The Au@SiO2 CSNPs-dispersed nanofluid is observed to exhibit an extremely low scattering albedo (i.e., ω=0.011) in comparison with that of the Ag@SiO2 CSNPs-dispersed nanofluid (ω=0.3).</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2020.110442</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Absorption ; Absorptivity ; Albedo ; Core-shell particles ; Core/shell nanoparticle ; Dispersion ; Dispersion stability ; Gold ; High temperature ; Low temperature ; Nanofluids ; Nanoparticles ; Optical properties ; Photothermal conversion ; Plasmonic nanofluid ; Plasmonics ; Pollutants ; Scattering and absorption coefficients ; Scattering coefficient ; Silicon dioxide ; Silver ; Solar collectors ; Solar heating ; Surfactants ; Synthesis ; Thermal stability</subject><ispartof>Solar energy materials and solar cells, 2020-06, Vol.209, p.110442, Article 110442</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-5be7dfc829b850eb69d22267f61e96226c0dac6da4785f24ca932d3315e10c663</citedby><cites>FETCH-LOGICAL-c334t-5be7dfc829b850eb69d22267f61e96226c0dac6da4785f24ca932d3315e10c663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Ryeri</creatorcontrib><creatorcontrib>Kim, Joong Bae</creatorcontrib><creatorcontrib>Qin, Caiyan</creatorcontrib><creatorcontrib>Lee, Heon</creatorcontrib><creatorcontrib>Lee, Bong Jae</creatorcontrib><creatorcontrib>Jung, Gun Young</creatorcontrib><title>Synthesis of Therminol-based plasmonic nanofluids with core/shell nanoparticles and characterization of their absorption/scattering coefficients</title><title>Solar energy materials and solar cells</title><description>Direct-absorption solar collectors (DASCs) that employ plasmonic nanofluids with engineered optical properties have drawn much attention for solar thermal applications. One of the major issues limiting further development of DASCs is the long-term dispersion of nanoparticles within the plasmonic nanofluids, which should be sustainable at high-temperature conditions. In this research, we propose surface-modified metal@SiO2 core/shell nanoparticles (CSNPs) to improve the dispersion stability and tune the absorption coefficient of nanofluids. The Au@SiO2 and Ag@SiO2 CSNPs are synthesized using a low-temperature two-step solution process. The plasmonic nanofluids with the synthesized metal@SiO2 CSNPs exhibit excellent dispersion stability of 93.7% for Au@SiO2 and 100% for Ag@SiO2 in 6 months without using any surfactants, and they also present a good thermal stability after thermal exposure at 150 ∘C for an hour. The absorption and scattering coefficients of a plasmonic nanofluid should be known precisely to properly analyze its photothermal conversion. Here, we also develop a new measurement system to separately determine the absorption and scattering coefficients of nanofluid. The Au@SiO2 CSNPs-dispersed nanofluid is observed to exhibit an extremely low scattering albedo (i.e., ω=0.011) in comparison with that of the Ag@SiO2 CSNPs-dispersed nanofluid (ω=0.3).</description><subject>Absorption</subject><subject>Absorptivity</subject><subject>Albedo</subject><subject>Core-shell particles</subject><subject>Core/shell nanoparticle</subject><subject>Dispersion</subject><subject>Dispersion stability</subject><subject>Gold</subject><subject>High temperature</subject><subject>Low temperature</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Optical properties</subject><subject>Photothermal conversion</subject><subject>Plasmonic nanofluid</subject><subject>Plasmonics</subject><subject>Pollutants</subject><subject>Scattering and absorption coefficients</subject><subject>Scattering coefficient</subject><subject>Silicon dioxide</subject><subject>Silver</subject><subject>Solar collectors</subject><subject>Solar heating</subject><subject>Surfactants</subject><subject>Synthesis</subject><subject>Thermal stability</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1v1DAQtRBILKX_gIMlztn11zrxBQlVUJAqcaCcLceeNF5l7eDxgtpf0Z9MQjhzmtHM-9B7hLzjbM8Z14fTHvN0dnUvmFhOnCklXpAd71rTSGm6l2THjGgbJlT3mrxBPDHGhJZqR56_P6Y6AkakeaD3I5RzTHlqeocQ6Dw5POcUPU0u5WG6xID0d6wj9bnAAUeYpr-v2ZUa_QRIXQrUj644X6HEJ1djTqv0YhILdT3mMq-3A3pXV0h6WMRgGKKPkCq-Ja8GNyFc_5tX5MfnT_c3X5q7b7dfbz7eNV5KVZtjD20YfCdM3x0Z9NoEIYRuB83B6GXzLDivg1NtdxyE8s5IEaTkR-DMay2vyPtNdy755wWw2lO-lLRYWqGkUqYz7YpSG8qXjFhgsHOJZ1ceLWd27d6e7Na9Xbu3W_cL7cNGgyXBrwjF4prOQ4gFfLUhx_8L_AEueJM-</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Lee, Ryeri</creator><creator>Kim, Joong Bae</creator><creator>Qin, Caiyan</creator><creator>Lee, Heon</creator><creator>Lee, Bong Jae</creator><creator>Jung, Gun Young</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200601</creationdate><title>Synthesis of Therminol-based plasmonic nanofluids with core/shell nanoparticles and characterization of their absorption/scattering coefficients</title><author>Lee, Ryeri ; Kim, Joong Bae ; Qin, Caiyan ; Lee, Heon ; Lee, Bong Jae ; Jung, Gun Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-5be7dfc829b850eb69d22267f61e96226c0dac6da4785f24ca932d3315e10c663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Absorptivity</topic><topic>Albedo</topic><topic>Core-shell particles</topic><topic>Core/shell nanoparticle</topic><topic>Dispersion</topic><topic>Dispersion stability</topic><topic>Gold</topic><topic>High temperature</topic><topic>Low temperature</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Optical properties</topic><topic>Photothermal conversion</topic><topic>Plasmonic nanofluid</topic><topic>Plasmonics</topic><topic>Pollutants</topic><topic>Scattering and absorption coefficients</topic><topic>Scattering coefficient</topic><topic>Silicon dioxide</topic><topic>Silver</topic><topic>Solar collectors</topic><topic>Solar heating</topic><topic>Surfactants</topic><topic>Synthesis</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Ryeri</creatorcontrib><creatorcontrib>Kim, Joong Bae</creatorcontrib><creatorcontrib>Qin, Caiyan</creatorcontrib><creatorcontrib>Lee, Heon</creatorcontrib><creatorcontrib>Lee, Bong Jae</creatorcontrib><creatorcontrib>Jung, Gun Young</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Ryeri</au><au>Kim, Joong Bae</au><au>Qin, Caiyan</au><au>Lee, Heon</au><au>Lee, Bong Jae</au><au>Jung, Gun Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Therminol-based plasmonic nanofluids with core/shell nanoparticles and characterization of their absorption/scattering coefficients</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>209</volume><spage>110442</spage><pages>110442-</pages><artnum>110442</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Direct-absorption solar collectors (DASCs) that employ plasmonic nanofluids with engineered optical properties have drawn much attention for solar thermal applications. One of the major issues limiting further development of DASCs is the long-term dispersion of nanoparticles within the plasmonic nanofluids, which should be sustainable at high-temperature conditions. In this research, we propose surface-modified metal@SiO2 core/shell nanoparticles (CSNPs) to improve the dispersion stability and tune the absorption coefficient of nanofluids. The Au@SiO2 and Ag@SiO2 CSNPs are synthesized using a low-temperature two-step solution process. The plasmonic nanofluids with the synthesized metal@SiO2 CSNPs exhibit excellent dispersion stability of 93.7% for Au@SiO2 and 100% for Ag@SiO2 in 6 months without using any surfactants, and they also present a good thermal stability after thermal exposure at 150 ∘C for an hour. The absorption and scattering coefficients of a plasmonic nanofluid should be known precisely to properly analyze its photothermal conversion. Here, we also develop a new measurement system to separately determine the absorption and scattering coefficients of nanofluid. The Au@SiO2 CSNPs-dispersed nanofluid is observed to exhibit an extremely low scattering albedo (i.e., ω=0.011) in comparison with that of the Ag@SiO2 CSNPs-dispersed nanofluid (ω=0.3).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2020.110442</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2020-06, Vol.209, p.110442, Article 110442 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_journals_2434498976 |
source | Elsevier |
subjects | Absorption Absorptivity Albedo Core-shell particles Core/shell nanoparticle Dispersion Dispersion stability Gold High temperature Low temperature Nanofluids Nanoparticles Optical properties Photothermal conversion Plasmonic nanofluid Plasmonics Pollutants Scattering and absorption coefficients Scattering coefficient Silicon dioxide Silver Solar collectors Solar heating Surfactants Synthesis Thermal stability |
title | Synthesis of Therminol-based plasmonic nanofluids with core/shell nanoparticles and characterization of their absorption/scattering coefficients |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Therminol-based%20plasmonic%20nanofluids%20with%20core/shell%20nanoparticles%20and%20characterization%20of%20their%20absorption/scattering%20coefficients&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Lee,%20Ryeri&rft.date=2020-06-01&rft.volume=209&rft.spage=110442&rft.pages=110442-&rft.artnum=110442&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2020.110442&rft_dat=%3Cproquest_cross%3E2434498976%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-5be7dfc829b850eb69d22267f61e96226c0dac6da4785f24ca932d3315e10c663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2434498976&rft_id=info:pmid/&rfr_iscdi=true |