Loading…

Boundary Riesz potential estimates for elliptic equations with measurable nonlinearities

We consider elliptic equations with measurable nonlinearities in a half cube Q2R∩{(x1,x′)∈Rn:x1>0} where the boundary data is given on Q2R∩{(x1,x′)∈Rn:x1=0}. We obtain a point-wise estimate of the gradient in terms of Riesz potential of the right-hand side data and the oscillation of the gradient...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear analysis 2020-05, Vol.194, p.111445, Article 111445
Main Authors: Kim, Youchan, Youn, Yeonghun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-9cd108b6c28bbfbcaeabbe16a95d25af30e4f9bb2022839be89bae2129cd0b553
cites cdi_FETCH-LOGICAL-c322t-9cd108b6c28bbfbcaeabbe16a95d25af30e4f9bb2022839be89bae2129cd0b553
container_end_page
container_issue
container_start_page 111445
container_title Nonlinear analysis
container_volume 194
creator Kim, Youchan
Youn, Yeonghun
description We consider elliptic equations with measurable nonlinearities in a half cube Q2R∩{(x1,x′)∈Rn:x1>0} where the boundary data is given on Q2R∩{(x1,x′)∈Rn:x1=0}. We obtain a point-wise estimate of the gradient in terms of Riesz potential of the right-hand side data and the oscillation of the gradient of the boundary data under the assumption that the nonlinearity is only allowed to be measurable in x1-variable.
doi_str_mv 10.1016/j.na.2019.02.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434499133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X19300501</els_id><sourcerecordid>2434499133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-9cd108b6c28bbfbcaeabbe16a95d25af30e4f9bb2022839be89bae2129cd0b553</originalsourceid><addsrcrecordid>eNp1kM1LxDAUxIMouK7ePQY8t-aj7TbeVPyCBUEU9haS9BVTuslukirrX2-W9erpXeY3M28QuqSkpIQ210PpVMkIFSVhJSH0CM1ou-BFzWh9jGaEN6yoq2Z1is5iHEhWLHgzQ6s7P7lOhR1-sxB_8MYncMmqEUNMdq0SRNz7gGEc7SZZg2E7qWS9i_jbpk-8BhWnoPQI2Hk3Wgcq2JStztFJr8YIF393jj4eH97vn4vl69PL_e2yMJyxVAjTUdLqxrBW614bBUproI0Sdcdq1XMCVS-0ZoSxlgsNrdAKGGUZJLqu-RxdHXw3wW-nXFoOfgouR0pW8aoSgnKeVeSgMsHHGKCXm5C_CztJidzvJwfplNzvJwmTeZ2M3BwQyO2_LAQZjQVnoLMBTJKdt__Dv3E5eiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434499133</pqid></control><display><type>article</type><title>Boundary Riesz potential estimates for elliptic equations with measurable nonlinearities</title><source>Elsevier</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Kim, Youchan ; Youn, Yeonghun</creator><creatorcontrib>Kim, Youchan ; Youn, Yeonghun</creatorcontrib><description>We consider elliptic equations with measurable nonlinearities in a half cube Q2R∩{(x1,x′)∈Rn:x1&gt;0} where the boundary data is given on Q2R∩{(x1,x′)∈Rn:x1=0}. We obtain a point-wise estimate of the gradient in terms of Riesz potential of the right-hand side data and the oscillation of the gradient of the boundary data under the assumption that the nonlinearity is only allowed to be measurable in x1-variable.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2019.02.001</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Elliptic functions ; Mathematical analysis ; Nonlinear elliptic equations ; Riesz potentials</subject><ispartof>Nonlinear analysis, 2020-05, Vol.194, p.111445, Article 111445</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-9cd108b6c28bbfbcaeabbe16a95d25af30e4f9bb2022839be89bae2129cd0b553</citedby><cites>FETCH-LOGICAL-c322t-9cd108b6c28bbfbcaeabbe16a95d25af30e4f9bb2022839be89bae2129cd0b553</cites><orcidid>0000-0002-1362-2779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X19300501$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3564,27924,27925,46003</link.rule.ids></links><search><creatorcontrib>Kim, Youchan</creatorcontrib><creatorcontrib>Youn, Yeonghun</creatorcontrib><title>Boundary Riesz potential estimates for elliptic equations with measurable nonlinearities</title><title>Nonlinear analysis</title><description>We consider elliptic equations with measurable nonlinearities in a half cube Q2R∩{(x1,x′)∈Rn:x1&gt;0} where the boundary data is given on Q2R∩{(x1,x′)∈Rn:x1=0}. We obtain a point-wise estimate of the gradient in terms of Riesz potential of the right-hand side data and the oscillation of the gradient of the boundary data under the assumption that the nonlinearity is only allowed to be measurable in x1-variable.</description><subject>Elliptic functions</subject><subject>Mathematical analysis</subject><subject>Nonlinear elliptic equations</subject><subject>Riesz potentials</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAUxIMouK7ePQY8t-aj7TbeVPyCBUEU9haS9BVTuslukirrX2-W9erpXeY3M28QuqSkpIQ210PpVMkIFSVhJSH0CM1ou-BFzWh9jGaEN6yoq2Z1is5iHEhWLHgzQ6s7P7lOhR1-sxB_8MYncMmqEUNMdq0SRNz7gGEc7SZZg2E7qWS9i_jbpk-8BhWnoPQI2Hk3Wgcq2JStztFJr8YIF393jj4eH97vn4vl69PL_e2yMJyxVAjTUdLqxrBW614bBUproI0Sdcdq1XMCVS-0ZoSxlgsNrdAKGGUZJLqu-RxdHXw3wW-nXFoOfgouR0pW8aoSgnKeVeSgMsHHGKCXm5C_CztJidzvJwfplNzvJwmTeZ2M3BwQyO2_LAQZjQVnoLMBTJKdt__Dv3E5eiQ</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Kim, Youchan</creator><creator>Youn, Yeonghun</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1362-2779</orcidid></search><sort><creationdate>20200501</creationdate><title>Boundary Riesz potential estimates for elliptic equations with measurable nonlinearities</title><author>Kim, Youchan ; Youn, Yeonghun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-9cd108b6c28bbfbcaeabbe16a95d25af30e4f9bb2022839be89bae2129cd0b553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Elliptic functions</topic><topic>Mathematical analysis</topic><topic>Nonlinear elliptic equations</topic><topic>Riesz potentials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Youchan</creatorcontrib><creatorcontrib>Youn, Yeonghun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Youchan</au><au>Youn, Yeonghun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary Riesz potential estimates for elliptic equations with measurable nonlinearities</atitle><jtitle>Nonlinear analysis</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>194</volume><spage>111445</spage><pages>111445-</pages><artnum>111445</artnum><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>We consider elliptic equations with measurable nonlinearities in a half cube Q2R∩{(x1,x′)∈Rn:x1&gt;0} where the boundary data is given on Q2R∩{(x1,x′)∈Rn:x1=0}. We obtain a point-wise estimate of the gradient in terms of Riesz potential of the right-hand side data and the oscillation of the gradient of the boundary data under the assumption that the nonlinearity is only allowed to be measurable in x1-variable.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2019.02.001</doi><orcidid>https://orcid.org/0000-0002-1362-2779</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2020-05, Vol.194, p.111445, Article 111445
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_journals_2434499133
source Elsevier; Backfile Package - Mathematics (Legacy) [YMT]
subjects Elliptic functions
Mathematical analysis
Nonlinear elliptic equations
Riesz potentials
title Boundary Riesz potential estimates for elliptic equations with measurable nonlinearities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20Riesz%20potential%20estimates%20for%20elliptic%20equations%20with%20measurable%20nonlinearities&rft.jtitle=Nonlinear%20analysis&rft.au=Kim,%20Youchan&rft.date=2020-05-01&rft.volume=194&rft.spage=111445&rft.pages=111445-&rft.artnum=111445&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2019.02.001&rft_dat=%3Cproquest_cross%3E2434499133%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-9cd108b6c28bbfbcaeabbe16a95d25af30e4f9bb2022839be89bae2129cd0b553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2434499133&rft_id=info:pmid/&rfr_iscdi=true