Loading…
Prediction of the heat capacity of main-chain-type polymers below the glass transition temperature
This study predicts the absolute values of heat capacities from the molecular formula per monomer for main-chain-type polymers below the glass transition temperature. The frequencies of the skeletal and group-vibration modes are calculated using the Tarasov and Einstein equations, respectively, and...
Saved in:
Published in: | Polymer journal 2020-09, Vol.52 (9), p.1113-1120 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-b9f2fe2e679d61a480ec12d4bf75f776a84d118c918f67db57bb62f4190a07d33 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-b9f2fe2e679d61a480ec12d4bf75f776a84d118c918f67db57bb62f4190a07d33 |
container_end_page | 1120 |
container_issue | 9 |
container_start_page | 1113 |
container_title | Polymer journal |
container_volume | 52 |
creator | Yokota, Marika Tsukushi, Itaru |
description | This study predicts the absolute values of heat capacities from the molecular formula per monomer for main-chain-type polymers below the glass transition temperature. The frequencies of the skeletal and group-vibration modes are calculated using the Tarasov and Einstein equations, respectively, and the heat-capacity differences at constant pressure and constant volume are used to correct the predicted heat capacity. The contributes of skeletal vibrations to the heat capacity can be expressed by one- and three-dimensional Tarasov equations, and the contribution of group vibrations can be determined by summing the group-vibration heat capacities for functional groups and atoms constituting the monomer as obtained from the Einstein equation. The absolute value of the heat capacity is predicted from this combination of equations. The heat capacities of poly(4-methyl-1-pentene) are predicted within an error range of 8.0% from 90 to 180 K and ±2.0% from 180 to 300 K. The heat capacities of poly(vinyl benzoate) are within ±2.0% agreement from 190 to 350 K, while for poly(1,4-butylene adipate), the agreement is within ±2.0% from 80 to 200 K.
This study predicted the absolute values of the heat capacities from the molecular formula per monomer for a main-chain-type polymer below the
T
g
. The calculations combined the Tarasov equation, the Einstein equation, and the (
C
p
−
C
V
) correction term, accounting for the degrees of freedom of the monomer unit. The difference of predicted and experimental heat capacities of poly(4-methyl-1-pentene) was within 8.0% from 90 to 180 K and within ±2.0% agreement from 180 to 300 K. For poly(vinyl benzoate), the values were within ±2.0% from 190 to 350 K, and for poly(1,4-butylene adipate), they were within ±2.0% from 80 to 200 K. The predicted heat capacity was accurate, especially in the high-temperature region above 180 K. |
doi_str_mv | 10.1038/s41428-020-0365-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2435011491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435011491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-b9f2fe2e679d61a480ec12d4bf75f776a84d118c918f67db57bb62f4190a07d33</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Fz9HJR9P0KItfIOhBzyFtJ7td-mWSRfrvbbeCJy8zMLzPO_AQcs3gloHQd0EyyTUFDhSESik_ISsmZE4hlXBKVgCCU6FzdU4uQtgDcJWCXJHi3WNVl7Huu6R3SdxhskMbk9IOtqzjOB9bW3e03M0zjgMmQ9-MLfqQFNj030dm29gQkuhtF-pjV8R2QG_jweMlOXO2CXj1u9fk8_HhY_NMX9-eXjb3r7QUGiItcscdclRZXilmpQYsGa9k4bLUZZmyWlaM6TJn2qmsKtKsKBR3kuVgIauEWJObpXfw_dcBQzT7_uC76aXhUqTAmMzZlGJLqvR9CB6dGXzdWj8aBmZWaRaVZlJpZpWGTwxfmDBluy36v-b_oR8BN3d3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435011491</pqid></control><display><type>article</type><title>Prediction of the heat capacity of main-chain-type polymers below the glass transition temperature</title><source>Springer Nature</source><creator>Yokota, Marika ; Tsukushi, Itaru</creator><creatorcontrib>Yokota, Marika ; Tsukushi, Itaru</creatorcontrib><description>This study predicts the absolute values of heat capacities from the molecular formula per monomer for main-chain-type polymers below the glass transition temperature. The frequencies of the skeletal and group-vibration modes are calculated using the Tarasov and Einstein equations, respectively, and the heat-capacity differences at constant pressure and constant volume are used to correct the predicted heat capacity. The contributes of skeletal vibrations to the heat capacity can be expressed by one- and three-dimensional Tarasov equations, and the contribution of group vibrations can be determined by summing the group-vibration heat capacities for functional groups and atoms constituting the monomer as obtained from the Einstein equation. The absolute value of the heat capacity is predicted from this combination of equations. The heat capacities of poly(4-methyl-1-pentene) are predicted within an error range of 8.0% from 90 to 180 K and ±2.0% from 180 to 300 K. The heat capacities of poly(vinyl benzoate) are within ±2.0% agreement from 190 to 350 K, while for poly(1,4-butylene adipate), the agreement is within ±2.0% from 80 to 200 K.
This study predicted the absolute values of the heat capacities from the molecular formula per monomer for a main-chain-type polymer below the
T
g
. The calculations combined the Tarasov equation, the Einstein equation, and the (
C
p
−
C
V
) correction term, accounting for the degrees of freedom of the monomer unit. The difference of predicted and experimental heat capacities of poly(4-methyl-1-pentene) was within 8.0% from 90 to 180 K and within ±2.0% agreement from 180 to 300 K. For poly(vinyl benzoate), the values were within ±2.0% from 190 to 350 K, and for poly(1,4-butylene adipate), they were within ±2.0% from 80 to 200 K. The predicted heat capacity was accurate, especially in the high-temperature region above 180 K.</description><identifier>ISSN: 0032-3896</identifier><identifier>EISSN: 1349-0540</identifier><identifier>DOI: 10.1038/s41428-020-0365-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/923/1028 ; 639/638/440 ; Benzoates ; Biomaterials ; Bioorganic Chemistry ; Chains (polymeric) ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Einstein equations ; Formulas (mathematics) ; Functional groups ; Glass transition temperature ; Heat ; High temperature ; Mathematical analysis ; Monomers ; Original Article ; Polymer Sciences ; Specific heat ; Surfaces and Interfaces ; Thin Films ; Vibration mode</subject><ispartof>Polymer journal, 2020-09, Vol.52 (9), p.1113-1120</ispartof><rights>The Society of Polymer Science, Japan 2020</rights><rights>The Society of Polymer Science, Japan 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-b9f2fe2e679d61a480ec12d4bf75f776a84d118c918f67db57bb62f4190a07d33</citedby><cites>FETCH-LOGICAL-c380t-b9f2fe2e679d61a480ec12d4bf75f776a84d118c918f67db57bb62f4190a07d33</cites><orcidid>0000-0002-9112-7255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yokota, Marika</creatorcontrib><creatorcontrib>Tsukushi, Itaru</creatorcontrib><title>Prediction of the heat capacity of main-chain-type polymers below the glass transition temperature</title><title>Polymer journal</title><addtitle>Polym J</addtitle><description>This study predicts the absolute values of heat capacities from the molecular formula per monomer for main-chain-type polymers below the glass transition temperature. The frequencies of the skeletal and group-vibration modes are calculated using the Tarasov and Einstein equations, respectively, and the heat-capacity differences at constant pressure and constant volume are used to correct the predicted heat capacity. The contributes of skeletal vibrations to the heat capacity can be expressed by one- and three-dimensional Tarasov equations, and the contribution of group vibrations can be determined by summing the group-vibration heat capacities for functional groups and atoms constituting the monomer as obtained from the Einstein equation. The absolute value of the heat capacity is predicted from this combination of equations. The heat capacities of poly(4-methyl-1-pentene) are predicted within an error range of 8.0% from 90 to 180 K and ±2.0% from 180 to 300 K. The heat capacities of poly(vinyl benzoate) are within ±2.0% agreement from 190 to 350 K, while for poly(1,4-butylene adipate), the agreement is within ±2.0% from 80 to 200 K.
This study predicted the absolute values of the heat capacities from the molecular formula per monomer for a main-chain-type polymer below the
T
g
. The calculations combined the Tarasov equation, the Einstein equation, and the (
C
p
−
C
V
) correction term, accounting for the degrees of freedom of the monomer unit. The difference of predicted and experimental heat capacities of poly(4-methyl-1-pentene) was within 8.0% from 90 to 180 K and within ±2.0% agreement from 180 to 300 K. For poly(vinyl benzoate), the values were within ±2.0% from 190 to 350 K, and for poly(1,4-butylene adipate), they were within ±2.0% from 80 to 200 K. The predicted heat capacity was accurate, especially in the high-temperature region above 180 K.</description><subject>639/301/923/1028</subject><subject>639/638/440</subject><subject>Benzoates</subject><subject>Biomaterials</subject><subject>Bioorganic Chemistry</subject><subject>Chains (polymeric)</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Einstein equations</subject><subject>Formulas (mathematics)</subject><subject>Functional groups</subject><subject>Glass transition temperature</subject><subject>Heat</subject><subject>High temperature</subject><subject>Mathematical analysis</subject><subject>Monomers</subject><subject>Original Article</subject><subject>Polymer Sciences</subject><subject>Specific heat</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Vibration mode</subject><issn>0032-3896</issn><issn>1349-0540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Fz9HJR9P0KItfIOhBzyFtJ7td-mWSRfrvbbeCJy8zMLzPO_AQcs3gloHQd0EyyTUFDhSESik_ISsmZE4hlXBKVgCCU6FzdU4uQtgDcJWCXJHi3WNVl7Huu6R3SdxhskMbk9IOtqzjOB9bW3e03M0zjgMmQ9-MLfqQFNj030dm29gQkuhtF-pjV8R2QG_jweMlOXO2CXj1u9fk8_HhY_NMX9-eXjb3r7QUGiItcscdclRZXilmpQYsGa9k4bLUZZmyWlaM6TJn2qmsKtKsKBR3kuVgIauEWJObpXfw_dcBQzT7_uC76aXhUqTAmMzZlGJLqvR9CB6dGXzdWj8aBmZWaRaVZlJpZpWGTwxfmDBluy36v-b_oR8BN3d3</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Yokota, Marika</creator><creator>Tsukushi, Itaru</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9112-7255</orcidid></search><sort><creationdate>20200901</creationdate><title>Prediction of the heat capacity of main-chain-type polymers below the glass transition temperature</title><author>Yokota, Marika ; Tsukushi, Itaru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-b9f2fe2e679d61a480ec12d4bf75f776a84d118c918f67db57bb62f4190a07d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/923/1028</topic><topic>639/638/440</topic><topic>Benzoates</topic><topic>Biomaterials</topic><topic>Bioorganic Chemistry</topic><topic>Chains (polymeric)</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Einstein equations</topic><topic>Formulas (mathematics)</topic><topic>Functional groups</topic><topic>Glass transition temperature</topic><topic>Heat</topic><topic>High temperature</topic><topic>Mathematical analysis</topic><topic>Monomers</topic><topic>Original Article</topic><topic>Polymer Sciences</topic><topic>Specific heat</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Vibration mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yokota, Marika</creatorcontrib><creatorcontrib>Tsukushi, Itaru</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Polymer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yokota, Marika</au><au>Tsukushi, Itaru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the heat capacity of main-chain-type polymers below the glass transition temperature</atitle><jtitle>Polymer journal</jtitle><stitle>Polym J</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>52</volume><issue>9</issue><spage>1113</spage><epage>1120</epage><pages>1113-1120</pages><issn>0032-3896</issn><eissn>1349-0540</eissn><abstract>This study predicts the absolute values of heat capacities from the molecular formula per monomer for main-chain-type polymers below the glass transition temperature. The frequencies of the skeletal and group-vibration modes are calculated using the Tarasov and Einstein equations, respectively, and the heat-capacity differences at constant pressure and constant volume are used to correct the predicted heat capacity. The contributes of skeletal vibrations to the heat capacity can be expressed by one- and three-dimensional Tarasov equations, and the contribution of group vibrations can be determined by summing the group-vibration heat capacities for functional groups and atoms constituting the monomer as obtained from the Einstein equation. The absolute value of the heat capacity is predicted from this combination of equations. The heat capacities of poly(4-methyl-1-pentene) are predicted within an error range of 8.0% from 90 to 180 K and ±2.0% from 180 to 300 K. The heat capacities of poly(vinyl benzoate) are within ±2.0% agreement from 190 to 350 K, while for poly(1,4-butylene adipate), the agreement is within ±2.0% from 80 to 200 K.
This study predicted the absolute values of the heat capacities from the molecular formula per monomer for a main-chain-type polymer below the
T
g
. The calculations combined the Tarasov equation, the Einstein equation, and the (
C
p
−
C
V
) correction term, accounting for the degrees of freedom of the monomer unit. The difference of predicted and experimental heat capacities of poly(4-methyl-1-pentene) was within 8.0% from 90 to 180 K and within ±2.0% agreement from 180 to 300 K. For poly(vinyl benzoate), the values were within ±2.0% from 190 to 350 K, and for poly(1,4-butylene adipate), they were within ±2.0% from 80 to 200 K. The predicted heat capacity was accurate, especially in the high-temperature region above 180 K.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41428-020-0365-2</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9112-7255</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3896 |
ispartof | Polymer journal, 2020-09, Vol.52 (9), p.1113-1120 |
issn | 0032-3896 1349-0540 |
language | eng |
recordid | cdi_proquest_journals_2435011491 |
source | Springer Nature |
subjects | 639/301/923/1028 639/638/440 Benzoates Biomaterials Bioorganic Chemistry Chains (polymeric) Chemistry Chemistry and Materials Science Chemistry/Food Science Einstein equations Formulas (mathematics) Functional groups Glass transition temperature Heat High temperature Mathematical analysis Monomers Original Article Polymer Sciences Specific heat Surfaces and Interfaces Thin Films Vibration mode |
title | Prediction of the heat capacity of main-chain-type polymers below the glass transition temperature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A38%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20heat%20capacity%20of%20main-chain-type%20polymers%20below%20the%20glass%20transition%20temperature&rft.jtitle=Polymer%20journal&rft.au=Yokota,%20Marika&rft.date=2020-09-01&rft.volume=52&rft.issue=9&rft.spage=1113&rft.epage=1120&rft.pages=1113-1120&rft.issn=0032-3896&rft.eissn=1349-0540&rft_id=info:doi/10.1038/s41428-020-0365-2&rft_dat=%3Cproquest_cross%3E2435011491%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-b9f2fe2e679d61a480ec12d4bf75f776a84d118c918f67db57bb62f4190a07d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2435011491&rft_id=info:pmid/&rfr_iscdi=true |