Loading…
Microwave AC voltage induced phase change in Sb\(_2\)Te\(_3\) nanowires
Scaling information bits to ever smaller dimensions is a dominant drive for information technology (IT). Nanostructured phase change material emerges as a key player in the current green-IT endeavor with low power consumption, functional modularity and promising scalability. In this work, we present...
Saved in:
Published in: | arXiv.org 2020-08 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Scaling information bits to ever smaller dimensions is a dominant drive for information technology (IT). Nanostructured phase change material emerges as a key player in the current green-IT endeavor with low power consumption, functional modularity and promising scalability. In this work, we present the demonstration of microwave AC voltage induced phase change phenomenon at 3 GHz in single Sb\(_2\)Te\(_3\) nanowires. The resistance change by a total of 6 - 7 orders of magnitude is evidenced by a transition from the crystalline metallic to the amorphous semiconducting phase, which is cross-examined by temperature dependent transport measurement and high-resolution electron microscopy analysis. This discovery could potentially tailor multi-state information bit encoding and discrimination along a single nanowire, rendering technology advancement for neuro-inspired computing devices. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2008.06666 |