Loading…

Magnetic Multiwall Carbon Nanotube Decorated with Novel Functionalities: Synthesis and Application as Adsorbents for Lead Removal from Aqueous Medium

Water pollution is one of the major challenges facing modern society because of industrial development and urban growth. This study is directed towards assessing the use of multiwall carbon nanotube, after derivatization and magnetization, as a new and renewable absorbent, to remove toxic metal ions...

Full description

Saved in:
Bibliographic Details
Published in:Processes 2020-08, Vol.8 (8), p.986
Main Authors: Hanbali, Ghadir, Jodeh, Shehdeh, Hamed, Othman, Bol, Roland, Khalaf, Bayan, Qdemat, Asma, Samhan, Subhi, Dagdag, Omar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Water pollution is one of the major challenges facing modern society because of industrial development and urban growth. This study is directed towards assessing the use of multiwall carbon nanotube, after derivatization and magnetization, as a new and renewable absorbent, to remove toxic metal ions from waste streams. The adsorbents were prepared by, first oxidation of multiwall carbon nanotube, then derivatizing the oxidized product with hydroxyl amine, hydrazine and amino acid. The adsorbents were characterized by various techniques. The adsorption efficiency of the multiwall carbon nanotube adsorbents toward Pb(II) was investigated. The effect of adsorbent’s dose, temperature, pH, and time on the adsorption efficiency were studied and the adsorption parameters that gave the highest efficiency were determined. The derivatives have unique coordination sites that included amine, hydroxyl, and carboxyl groups, which are excellent chelating agents for metal ions. The thermodynamic and kinetic results analysis results indicated spontaneous adsorption of Pb(II) by the multiwall carbon nanotube adsorbents at room temperature. The adsorption process followed pseudo-second-order and Langmuir isotherm model. The adsorbents were regenerated using 0.1 N HCl.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr8080986