Loading…
Magnetohydrodynamic flow of Maxwell nanofluid with binary chemical reaction and Arrhenius activation energy
The present paper addresses magnetohydrodynamics flow of Maxwell nanofluid due to stretching cylinder. To visualize the stimulus of Brownian movement and thermophoresis phenomena on Maxwell nanofluid, Buongiorno’s relation has been accounted. Moreover, heat source/sink, thermal radiation and convect...
Saved in:
Published in: | Applied nanoscience 2020-08, Vol.10 (8), p.2951-2963 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present paper addresses magnetohydrodynamics flow of Maxwell nanofluid due to stretching cylinder. To visualize the stimulus of Brownian movement and thermophoresis phenomena on Maxwell nanofluid, Buongiorno’s relation has been accounted. Moreover, heat source/sink, thermal radiation and convective condition are also attended. Mass transfer is studied by taking activation energy along with binary chemical reaction. Homotopic algorithm is adopted for the computational process of nonlinear differential systems. Five quantities, namely velocity, temperature, concentration and local Nusselt and Sherwood numbers are discussed. It is concluded that curvature parameter enhances for velocity, temperature and concentration fields. Temperature of fluid rises for radiation parameter and thermal Biot number. Clearly concentration of nanoparticles enhances with activation energy while it reduces with chemical reaction parameter. Heat transfer enhances while mass transfer rate reduces for Brownian movement and thermophoresis parameter. |
---|---|
ISSN: | 2190-5509 2190-5517 |
DOI: | 10.1007/s13204-019-01143-w |