Loading…

Optimal Recovery of a Derivative of an Analytic Function from Values of the Function Given with an Error on a Part of the Boundary. II

We continue the study of several related extremal problems for functions analytic in a simply connected domain G with a rectifiable Jordan boundary Γ. In particular, the problem of optimal recovery of a derivative at a point z 0 ∈ G from limit boundary values given with an error on a measurable part...

Full description

Saved in:
Bibliographic Details
Published in:Analysis mathematica (Budapest) 2020-09, Vol.46 (3), p.409-424
Main Author: Akopyan, R. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-db95c12e9dc0bef83f3eac71a3484783fc4c7af5a7f4141f31f343033c0321753
container_end_page 424
container_issue 3
container_start_page 409
container_title Analysis mathematica (Budapest)
container_volume 46
creator Akopyan, R. R.
description We continue the study of several related extremal problems for functions analytic in a simply connected domain G with a rectifiable Jordan boundary Γ. In particular, the problem of optimal recovery of a derivative at a point z 0 ∈ G from limit boundary values given with an error on a measurable part γ 1 of the boundary Γ for the class Q of functions with limit boundary values bounded by 1 on γ 0 = Γ γ 1 as well as the problem of the best approximation of the derivative at a point z 0 ∈ G by bounded linear functionals in L ∞ (γ 1 ) on the class Q . Complete exact solutions of the considered problems are obtained.
doi_str_mv 10.1007/s10476-020-0039-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2435545497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435545497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-db95c12e9dc0bef83f3eac71a3484783fc4c7af5a7f4141f31f343033c0321753</originalsourceid><addsrcrecordid>eNp1kNFOwyAYRonRxDl9AO9IvO6EAqO9nHObS5bMGDXeEcbAdenKBDrTF_C5pVazKxMS8sP5vsAB4BqjAUaI33qMKB8mKEUJQiRP2AnoYZZlScrJ2ynoIUxIQjKWnoML77cIoXyYkR74Wu5DsZMlfNLKHrRroDVQwnvtioMMxUH_zBUcVbJsQqHgtK5UKGwFjbM7-CrLWvuWCRt9vJvFYAU_i7BpsxPnrIPxWMJH6cIffWfrai1dM4Dz-SU4M7L0-up374OX6eR5_JAslrP5eLRIVDrMQrJe5UzhVOdrhVbaZMQQLRXHktCM8jgqqrg0THJDMcWGxEUJIkQhkmLOSB_cdL17Zz_iy4PY2trFv3mRUsIYZTTnkcIdpZz13mkj9i5Kco3ASLS6RadbRN2i1S3a5rTL-MhW79odm_8PfQMLAoIq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435545497</pqid></control><display><type>article</type><title>Optimal Recovery of a Derivative of an Analytic Function from Values of the Function Given with an Error on a Part of the Boundary. II</title><source>Springer Nature</source><creator>Akopyan, R. R.</creator><creatorcontrib>Akopyan, R. R.</creatorcontrib><description>We continue the study of several related extremal problems for functions analytic in a simply connected domain G with a rectifiable Jordan boundary Γ. In particular, the problem of optimal recovery of a derivative at a point z 0 ∈ G from limit boundary values given with an error on a measurable part γ 1 of the boundary Γ for the class Q of functions with limit boundary values bounded by 1 on γ 0 = Γ γ 1 as well as the problem of the best approximation of the derivative at a point z 0 ∈ G by bounded linear functionals in L ∞ (γ 1 ) on the class Q . Complete exact solutions of the considered problems are obtained.</description><identifier>ISSN: 0133-3852</identifier><identifier>EISSN: 1588-273X</identifier><identifier>DOI: 10.1007/s10476-020-0039-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Analytic functions ; Boundary value problems ; Error analysis ; Exact solutions ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Recovery</subject><ispartof>Analysis mathematica (Budapest), 2020-09, Vol.46 (3), p.409-424</ispartof><rights>Akadémiai Kiadó, Budapest 2020</rights><rights>Akadémiai Kiadó, Budapest 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-db95c12e9dc0bef83f3eac71a3484783fc4c7af5a7f4141f31f343033c0321753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Akopyan, R. R.</creatorcontrib><title>Optimal Recovery of a Derivative of an Analytic Function from Values of the Function Given with an Error on a Part of the Boundary. II</title><title>Analysis mathematica (Budapest)</title><addtitle>Anal Math</addtitle><description>We continue the study of several related extremal problems for functions analytic in a simply connected domain G with a rectifiable Jordan boundary Γ. In particular, the problem of optimal recovery of a derivative at a point z 0 ∈ G from limit boundary values given with an error on a measurable part γ 1 of the boundary Γ for the class Q of functions with limit boundary values bounded by 1 on γ 0 = Γ γ 1 as well as the problem of the best approximation of the derivative at a point z 0 ∈ G by bounded linear functionals in L ∞ (γ 1 ) on the class Q . Complete exact solutions of the considered problems are obtained.</description><subject>Analysis</subject><subject>Analytic functions</subject><subject>Boundary value problems</subject><subject>Error analysis</subject><subject>Exact solutions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Recovery</subject><issn>0133-3852</issn><issn>1588-273X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kNFOwyAYRonRxDl9AO9IvO6EAqO9nHObS5bMGDXeEcbAdenKBDrTF_C5pVazKxMS8sP5vsAB4BqjAUaI33qMKB8mKEUJQiRP2AnoYZZlScrJ2ynoIUxIQjKWnoML77cIoXyYkR74Wu5DsZMlfNLKHrRroDVQwnvtioMMxUH_zBUcVbJsQqHgtK5UKGwFjbM7-CrLWvuWCRt9vJvFYAU_i7BpsxPnrIPxWMJH6cIffWfrai1dM4Dz-SU4M7L0-up374OX6eR5_JAslrP5eLRIVDrMQrJe5UzhVOdrhVbaZMQQLRXHktCM8jgqqrg0THJDMcWGxEUJIkQhkmLOSB_cdL17Zz_iy4PY2trFv3mRUsIYZTTnkcIdpZz13mkj9i5Kco3ASLS6RadbRN2i1S3a5rTL-MhW79odm_8PfQMLAoIq</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Akopyan, R. R.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>Optimal Recovery of a Derivative of an Analytic Function from Values of the Function Given with an Error on a Part of the Boundary. II</title><author>Akopyan, R. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-db95c12e9dc0bef83f3eac71a3484783fc4c7af5a7f4141f31f343033c0321753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Analytic functions</topic><topic>Boundary value problems</topic><topic>Error analysis</topic><topic>Exact solutions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akopyan, R. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Analysis mathematica (Budapest)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akopyan, R. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Recovery of a Derivative of an Analytic Function from Values of the Function Given with an Error on a Part of the Boundary. II</atitle><jtitle>Analysis mathematica (Budapest)</jtitle><stitle>Anal Math</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>46</volume><issue>3</issue><spage>409</spage><epage>424</epage><pages>409-424</pages><issn>0133-3852</issn><eissn>1588-273X</eissn><abstract>We continue the study of several related extremal problems for functions analytic in a simply connected domain G with a rectifiable Jordan boundary Γ. In particular, the problem of optimal recovery of a derivative at a point z 0 ∈ G from limit boundary values given with an error on a measurable part γ 1 of the boundary Γ for the class Q of functions with limit boundary values bounded by 1 on γ 0 = Γ γ 1 as well as the problem of the best approximation of the derivative at a point z 0 ∈ G by bounded linear functionals in L ∞ (γ 1 ) on the class Q . Complete exact solutions of the considered problems are obtained.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10476-020-0039-5</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0133-3852
ispartof Analysis mathematica (Budapest), 2020-09, Vol.46 (3), p.409-424
issn 0133-3852
1588-273X
language eng
recordid cdi_proquest_journals_2435545497
source Springer Nature
subjects Analysis
Analytic functions
Boundary value problems
Error analysis
Exact solutions
Mathematical analysis
Mathematics
Mathematics and Statistics
Recovery
title Optimal Recovery of a Derivative of an Analytic Function from Values of the Function Given with an Error on a Part of the Boundary. II
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A22%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Recovery%20of%20a%20Derivative%20of%20an%20Analytic%20Function%20from%20Values%20of%20the%20Function%20Given%20with%20an%20Error%20on%20a%20Part%20of%20the%20Boundary.%20II&rft.jtitle=Analysis%20mathematica%20(Budapest)&rft.au=Akopyan,%20R.%20R.&rft.date=2020-09-01&rft.volume=46&rft.issue=3&rft.spage=409&rft.epage=424&rft.pages=409-424&rft.issn=0133-3852&rft.eissn=1588-273X&rft_id=info:doi/10.1007/s10476-020-0039-5&rft_dat=%3Cproquest_cross%3E2435545497%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-db95c12e9dc0bef83f3eac71a3484783fc4c7af5a7f4141f31f343033c0321753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2435545497&rft_id=info:pmid/&rfr_iscdi=true