Loading…

An investigation of the ultrasonic joining process parameters effect on the mechanical properties of metal-composite hybrid joints

The ultrasonic joining process was recently introduced as an alternative concept to join through-the-thickness reinforced metal-composite hybrid structures. In this work, the investigation of joining process parameters effect on the joint mechanical performance of Ti-6Al-4V-glass-fiber-reinforced po...

Full description

Saved in:
Bibliographic Details
Published in:Welding in the world 2020-09, Vol.64 (9), p.1481-1495
Main Authors: Feistauer, E. E., dos Santos, J. F., Amancio-Filho, S. T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ultrasonic joining process was recently introduced as an alternative concept to join through-the-thickness reinforced metal-composite hybrid structures. In this work, the investigation of joining process parameters effect on the joint mechanical performance of Ti-6Al-4V-glass-fiber-reinforced polyetherimide overlap joints was carried out by Box-Behnken design of experiments. The individual and combined effects of joining energy, sonotrode oscillation amplitude, and joining pressure on the ultimate lap shear force were elucidated by response surfaces method and analysis of variance. As a result of this study, a set of optimized joining parameters were obtained to produce joints with high ultimate lap shear force. The obtained reliable reduced model ( R 2  = 82%) displays a major influence of joining energy (25.3%) and sonotrode oscillation amplitude (21.2%) on the joint mechanical performance. Two-way interaction response surfaces were used to support strategies to optimize the maximum ultimate lap shear force. By comparing the optimized joint condition produced in this work with previously published results an improvement of 79% in ultimate lap shear force was attained, thereby, proving the potential of the proposed process optimization procedure.
ISSN:0043-2288
1878-6669
DOI:10.1007/s40194-020-00927-x