Loading…

A survey on question answering systems over linked data and documents

Question Answering (QA) systems aim at supplying precise answers to questions, posed by users in a natural language form. They are used in a wide range of application areas, from bio-medicine to tourism. Their underlying knowledge source can be structured data (e.g. RDF graphs and SQL databases), un...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent information systems 2020-10, Vol.55 (2), p.233-259
Main Authors: Dimitrakis, Eleftherios, Sgontzos, Konstantinos, Tzitzikas, Yannis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Question Answering (QA) systems aim at supplying precise answers to questions, posed by users in a natural language form. They are used in a wide range of application areas, from bio-medicine to tourism. Their underlying knowledge source can be structured data (e.g. RDF graphs and SQL databases), unstructured data in the form of plain text (e.g. textual excerpts from Wikipedia), or combinations of the above. In this paper we survey the recent work that has been done in the area of stateless QA systems with emphasis on methods that have been applied in RDF and Linked Data, documents, and mixtures of these. We identify the main challenges, we categorize the existing approaches according to various aspects, we review 21 recent systems, and 23 evaluation and training datasets that are most commonly used in the literature categorized according to the type of the domain, the underlying knowledge source, the provided tasks, and the associated evaluation metrics.
ISSN:0925-9902
1573-7675
DOI:10.1007/s10844-019-00584-7