Loading…
A Comparative Study of Recent Non-traditional Methods for Mechanical Design Optimization
Solving practical mechanical problems is considered as a real challenge for evaluating the efficiency of newly developed algorithms. The present article introduces a comparative study on the application of ten recent meta-heuristic approaches to optimize the design of six mechanical engineering opti...
Saved in:
Published in: | Archives of computational methods in engineering 2020-09, Vol.27 (4), p.1031-1048 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Solving practical mechanical problems is considered as a real challenge for evaluating the efficiency of newly developed algorithms. The present article introduces a comparative study on the application of ten recent meta-heuristic approaches to optimize the design of six mechanical engineering optimization problems. The algorithms are: the artificial bee colony (ABC), particle swarm optimization (PSO) algorithm, moth-flame optimization (MFO), ant lion optimizer (ALO), water cycle algorithm (WCA), evaporation rate WCA (ER-WCA), grey wolf optimizer (GWO), mine blast algorithm (MBA), whale optimization algorithm (WOA) and salp swarm algorithm (SSA). The performances of the algorithms are tested quantitatively and qualitatively using convergence speed, solution quality, and the robustness. The experimental results on the six mechanical problems demonstrate the efficiency and the ability of the algorithms used in this article. |
---|---|
ISSN: | 1134-3060 1886-1784 |
DOI: | 10.1007/s11831-019-09343-x |