Loading…

The Simulation of Implications of Sensor Technology on the New Product Development to Solve Lot-Sizing Problems with Fuzzy Approach

Implications of sensor technology on new product introduction requires critical decisions on divergent marketing and operational aspects. In this paper, we employed the Bass model for a new product that used the sensor technology diffusion from the perspective of the Wagner-Whitin lot-sizing model w...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sensors 2020, Vol.2020 (2020), p.1-15
Main Authors: Gaol, Ford Lumban, Matsuo, Tokuro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Implications of sensor technology on new product introduction requires critical decisions on divergent marketing and operational aspects. In this paper, we employed the Bass model for a new product that used the sensor technology diffusion from the perspective of the Wagner-Whitin lot-sizing model which discusses this matter related to suitability of sensor technology on the market and operational dimensions. The objective of this study is to propose an uncertain fuzzy approach to specify the new product that applied the sensor technology introduction’s optimum time, price, production scheduling, and rate simultaneously. This model will be applied to analyze the impact of sensor technology diffusion on the market acceptance and some operational parameters, for instance, total customer population, price elasticities, startup and maintenance costs, the unit’s variable cost and research and development costs on optimized benefit, and the product’s optimized lifespan. In this experiment, we have inspiration from the version of the Sale et al. (2017) model which considers uncertainty by using fuzzy triangular numbers and performing the alpha cut method. Moreover, in this research, variable cost is considered as a Cobb-Douglas function. Initially, in Research Methodology, mathematical modeling is applied, wherein utilizing simulation and the experimental design method, data were generated. Eventually, using LINGO optimization software, the problem was solved, and for further examinations considering the existence of various parameters, design of experiment (DoE) by Design-Expert 8 software and response surface methodology was adopted to analyze and optimize the problem’s parameters. The results indicated that the objective function’s climax occurs when the higher limit of alpha being 0.7 is assumed; hence, the optimum state of demand belongs to this amount of alpha.
ISSN:1687-725X
1687-7268
DOI:10.1155/2020/3503895