Loading…
Biomimetic hybrid membrane-based nanoplatforms: synthesis, properties and biomedical applications
The rapid clearance and capture by the immune system pose a big challenge in targeted drug delivery using nanocarriers. Cell membrane coating endows nanoplatforms with prolonged blood circulation, enhanced immune escape, and improved targeting capability. However, monotypic cell membrane fails to me...
Saved in:
Published in: | Nanoscale horizons 2020-09, Vol.5 (9), p.1293-132 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The rapid clearance and capture by the immune system pose a big challenge in targeted drug delivery using nanocarriers. Cell membrane coating endows nanoplatforms with prolonged blood circulation, enhanced immune escape, and improved targeting capability. However, monotypic cell membrane fails to meet the omnifarious needs of biomedical applications. The combination of different types of cell membranes provides a promising solution to provide multifunctional biomimetic nanoplatforms. In this review, we first discuss the feasibility of constructing biomimetic hybrid membranes and summarize current methods of preparing biomimetic hybrid membrane-based nanoplatforms (BHMNs) and their biomedical applications including drug delivery, cancer detection, detoxification, and cancer vaccines. Finally, the prospects and challenges of utilizing BHMNs for personalized medicine are also discussed.
This review focuses on the classification, synthesis, biomedical applications, prospects and challenges of biomimetic hybrid membrane-based nanoparticles. |
---|---|
ISSN: | 2055-6756 2055-6764 2055-6764 |
DOI: | 10.1039/d0nh00267d |