Loading…
Role of high nitrogen flux in InAlN growth by plasma-assisted molecular beam epitaxy
•High N-flux stabilizes In-N bonds in InAlN.•InAlN lattice-matched to GaN was grown at 605 °C by MBE.•InAlN indium content diagram is shown as a function of growth temperature and N-flux.•Honeycomb microstructure is observed for InAlN grown with low and high N-flux.•Increase of average cell size is...
Saved in:
Published in: | Journal of crystal growth 2020-08, Vol.544, p.125720, Article 125720 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c340t-ee86ef20f2efdcca00cf9f107f83fc85750d9464ee15f351a5e84d76927f0c763 |
---|---|
cites | cdi_FETCH-LOGICAL-c340t-ee86ef20f2efdcca00cf9f107f83fc85750d9464ee15f351a5e84d76927f0c763 |
container_end_page | |
container_issue | |
container_start_page | 125720 |
container_title | Journal of crystal growth |
container_volume | 544 |
creator | Sawicka, Marta Fiuczek, Natalia Wolny, Paweł Feduniewicz-Żmuda, Anna Siekacz, Marcin Kryśko, Marcin Nowakowski-Szkudlarek, Krzesimir Smalc-Koziorowska, Julita Kret, Sławomir Gačević, Žarko Calleja, Enrique Skierbiszewski, Czesław |
description | •High N-flux stabilizes In-N bonds in InAlN.•InAlN lattice-matched to GaN was grown at 605 °C by MBE.•InAlN indium content diagram is shown as a function of growth temperature and N-flux.•Honeycomb microstructure is observed for InAlN grown with low and high N-flux.•Increase of average cell size is observed for increased N-flux and growth temperature.
We study the impact of increased active nitrogen flux (N-flux) on the indium content and structural properties of InAlN layers grown by plasma-assisted molecular beam epitaxy. It is shown that high N-flux can stabilize In-N bonds, so that In0.18Al0.82N is grown at 605 °C, which is the highest reported temperature so far for the composition lattice-matched (LM) to GaN. Adiagram of InAlN indium content is shown as a function of growth temperature and N-flux. The InAlN layers grown using low and high N-flux had grainy surface morphology typical for N-rich conditions. Inhomogeneity in indium distribution on nanometer scale, i.e. typical honeycomb microstructure, is found for InAlN layers grown using both: low and high N-flux. An increase of average cell size is observed for LM-InAlN when the N-flux and growth temperature are increased. |
doi_str_mv | 10.1016/j.jcrysgro.2020.125720 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2436433458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024820302438</els_id><sourcerecordid>2436433458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-ee86ef20f2efdcca00cf9f107f83fc85750d9464ee15f351a5e84d76927f0c763</originalsourceid><addsrcrecordid>eNqFkNtKAzEQhoMoWKuvIAGvt06SPfXOUjwUioLU65BmJ22WPdRkV7tvb8rqtTczMMz3D_MRcstgxoCl9-Ws1G7wO9fOOPAw5EnG4YxMWJ6JKAHg52QSKo-Ax_klufK-BAgkgwnZvLcV0tbQvd3taWM71-6woabqj9Q2dNUsqlcaor-7Pd0O9FApX6tIeW99hwWtA637Sjm6RVVTPNhOHYdrcmFU5fHmt0_Jx9PjZvkSrd-eV8vFOtIihi5CzFM0HAxHU2itALSZGwaZyYXReZIlUMzjNEZkiREJUwnmcZGlc54Z0FkqpuRuzD249rNH38my7V0TTkoeizQWIk7ysJWOW9q13js08uBsrdwgGciTQVnKP4PyZFCOBgP4MIIYfviy6KTXFhuNhXWoO1m09r-IH6TcfaI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436433458</pqid></control><display><type>article</type><title>Role of high nitrogen flux in InAlN growth by plasma-assisted molecular beam epitaxy</title><source>Elsevier</source><creator>Sawicka, Marta ; Fiuczek, Natalia ; Wolny, Paweł ; Feduniewicz-Żmuda, Anna ; Siekacz, Marcin ; Kryśko, Marcin ; Nowakowski-Szkudlarek, Krzesimir ; Smalc-Koziorowska, Julita ; Kret, Sławomir ; Gačević, Žarko ; Calleja, Enrique ; Skierbiszewski, Czesław</creator><creatorcontrib>Sawicka, Marta ; Fiuczek, Natalia ; Wolny, Paweł ; Feduniewicz-Żmuda, Anna ; Siekacz, Marcin ; Kryśko, Marcin ; Nowakowski-Szkudlarek, Krzesimir ; Smalc-Koziorowska, Julita ; Kret, Sławomir ; Gačević, Žarko ; Calleja, Enrique ; Skierbiszewski, Czesław</creatorcontrib><description>•High N-flux stabilizes In-N bonds in InAlN.•InAlN lattice-matched to GaN was grown at 605 °C by MBE.•InAlN indium content diagram is shown as a function of growth temperature and N-flux.•Honeycomb microstructure is observed for InAlN grown with low and high N-flux.•Increase of average cell size is observed for increased N-flux and growth temperature.
We study the impact of increased active nitrogen flux (N-flux) on the indium content and structural properties of InAlN layers grown by plasma-assisted molecular beam epitaxy. It is shown that high N-flux can stabilize In-N bonds, so that In0.18Al0.82N is grown at 605 °C, which is the highest reported temperature so far for the composition lattice-matched (LM) to GaN. Adiagram of InAlN indium content is shown as a function of growth temperature and N-flux. The InAlN layers grown using low and high N-flux had grainy surface morphology typical for N-rich conditions. Inhomogeneity in indium distribution on nanometer scale, i.e. typical honeycomb microstructure, is found for InAlN layers grown using both: low and high N-flux. An increase of average cell size is observed for LM-InAlN when the N-flux and growth temperature are increased.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2020.125720</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Atomic force microscopy ; A1. Reflection high energy electron diffraction ; A3. Molecular beam epitaxy ; B1. Nitrides ; B2. Semiconducting III-V materials ; Epitaxial growth ; Flux ; Indium ; Inhomogeneity ; Lattice matching ; Molecular beam epitaxy ; Morphology ; Nitrogen</subject><ispartof>Journal of crystal growth, 2020-08, Vol.544, p.125720, Article 125720</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-ee86ef20f2efdcca00cf9f107f83fc85750d9464ee15f351a5e84d76927f0c763</citedby><cites>FETCH-LOGICAL-c340t-ee86ef20f2efdcca00cf9f107f83fc85750d9464ee15f351a5e84d76927f0c763</cites><orcidid>0000-0003-0552-2169 ; 0000-0002-6343-0281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sawicka, Marta</creatorcontrib><creatorcontrib>Fiuczek, Natalia</creatorcontrib><creatorcontrib>Wolny, Paweł</creatorcontrib><creatorcontrib>Feduniewicz-Żmuda, Anna</creatorcontrib><creatorcontrib>Siekacz, Marcin</creatorcontrib><creatorcontrib>Kryśko, Marcin</creatorcontrib><creatorcontrib>Nowakowski-Szkudlarek, Krzesimir</creatorcontrib><creatorcontrib>Smalc-Koziorowska, Julita</creatorcontrib><creatorcontrib>Kret, Sławomir</creatorcontrib><creatorcontrib>Gačević, Žarko</creatorcontrib><creatorcontrib>Calleja, Enrique</creatorcontrib><creatorcontrib>Skierbiszewski, Czesław</creatorcontrib><title>Role of high nitrogen flux in InAlN growth by plasma-assisted molecular beam epitaxy</title><title>Journal of crystal growth</title><description>•High N-flux stabilizes In-N bonds in InAlN.•InAlN lattice-matched to GaN was grown at 605 °C by MBE.•InAlN indium content diagram is shown as a function of growth temperature and N-flux.•Honeycomb microstructure is observed for InAlN grown with low and high N-flux.•Increase of average cell size is observed for increased N-flux and growth temperature.
We study the impact of increased active nitrogen flux (N-flux) on the indium content and structural properties of InAlN layers grown by plasma-assisted molecular beam epitaxy. It is shown that high N-flux can stabilize In-N bonds, so that In0.18Al0.82N is grown at 605 °C, which is the highest reported temperature so far for the composition lattice-matched (LM) to GaN. Adiagram of InAlN indium content is shown as a function of growth temperature and N-flux. The InAlN layers grown using low and high N-flux had grainy surface morphology typical for N-rich conditions. Inhomogeneity in indium distribution on nanometer scale, i.e. typical honeycomb microstructure, is found for InAlN layers grown using both: low and high N-flux. An increase of average cell size is observed for LM-InAlN when the N-flux and growth temperature are increased.</description><subject>A1. Atomic force microscopy</subject><subject>A1. Reflection high energy electron diffraction</subject><subject>A3. Molecular beam epitaxy</subject><subject>B1. Nitrides</subject><subject>B2. Semiconducting III-V materials</subject><subject>Epitaxial growth</subject><subject>Flux</subject><subject>Indium</subject><subject>Inhomogeneity</subject><subject>Lattice matching</subject><subject>Molecular beam epitaxy</subject><subject>Morphology</subject><subject>Nitrogen</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkNtKAzEQhoMoWKuvIAGvt06SPfXOUjwUioLU65BmJ22WPdRkV7tvb8rqtTczMMz3D_MRcstgxoCl9-Ws1G7wO9fOOPAw5EnG4YxMWJ6JKAHg52QSKo-Ax_klufK-BAgkgwnZvLcV0tbQvd3taWM71-6woabqj9Q2dNUsqlcaor-7Pd0O9FApX6tIeW99hwWtA637Sjm6RVVTPNhOHYdrcmFU5fHmt0_Jx9PjZvkSrd-eV8vFOtIihi5CzFM0HAxHU2itALSZGwaZyYXReZIlUMzjNEZkiREJUwnmcZGlc54Z0FkqpuRuzD249rNH38my7V0TTkoeizQWIk7ysJWOW9q13js08uBsrdwgGciTQVnKP4PyZFCOBgP4MIIYfviy6KTXFhuNhXWoO1m09r-IH6TcfaI</recordid><startdate>20200815</startdate><enddate>20200815</enddate><creator>Sawicka, Marta</creator><creator>Fiuczek, Natalia</creator><creator>Wolny, Paweł</creator><creator>Feduniewicz-Żmuda, Anna</creator><creator>Siekacz, Marcin</creator><creator>Kryśko, Marcin</creator><creator>Nowakowski-Szkudlarek, Krzesimir</creator><creator>Smalc-Koziorowska, Julita</creator><creator>Kret, Sławomir</creator><creator>Gačević, Žarko</creator><creator>Calleja, Enrique</creator><creator>Skierbiszewski, Czesław</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0552-2169</orcidid><orcidid>https://orcid.org/0000-0002-6343-0281</orcidid></search><sort><creationdate>20200815</creationdate><title>Role of high nitrogen flux in InAlN growth by plasma-assisted molecular beam epitaxy</title><author>Sawicka, Marta ; Fiuczek, Natalia ; Wolny, Paweł ; Feduniewicz-Żmuda, Anna ; Siekacz, Marcin ; Kryśko, Marcin ; Nowakowski-Szkudlarek, Krzesimir ; Smalc-Koziorowska, Julita ; Kret, Sławomir ; Gačević, Žarko ; Calleja, Enrique ; Skierbiszewski, Czesław</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-ee86ef20f2efdcca00cf9f107f83fc85750d9464ee15f351a5e84d76927f0c763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A1. Atomic force microscopy</topic><topic>A1. Reflection high energy electron diffraction</topic><topic>A3. Molecular beam epitaxy</topic><topic>B1. Nitrides</topic><topic>B2. Semiconducting III-V materials</topic><topic>Epitaxial growth</topic><topic>Flux</topic><topic>Indium</topic><topic>Inhomogeneity</topic><topic>Lattice matching</topic><topic>Molecular beam epitaxy</topic><topic>Morphology</topic><topic>Nitrogen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sawicka, Marta</creatorcontrib><creatorcontrib>Fiuczek, Natalia</creatorcontrib><creatorcontrib>Wolny, Paweł</creatorcontrib><creatorcontrib>Feduniewicz-Żmuda, Anna</creatorcontrib><creatorcontrib>Siekacz, Marcin</creatorcontrib><creatorcontrib>Kryśko, Marcin</creatorcontrib><creatorcontrib>Nowakowski-Szkudlarek, Krzesimir</creatorcontrib><creatorcontrib>Smalc-Koziorowska, Julita</creatorcontrib><creatorcontrib>Kret, Sławomir</creatorcontrib><creatorcontrib>Gačević, Žarko</creatorcontrib><creatorcontrib>Calleja, Enrique</creatorcontrib><creatorcontrib>Skierbiszewski, Czesław</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sawicka, Marta</au><au>Fiuczek, Natalia</au><au>Wolny, Paweł</au><au>Feduniewicz-Żmuda, Anna</au><au>Siekacz, Marcin</au><au>Kryśko, Marcin</au><au>Nowakowski-Szkudlarek, Krzesimir</au><au>Smalc-Koziorowska, Julita</au><au>Kret, Sławomir</au><au>Gačević, Žarko</au><au>Calleja, Enrique</au><au>Skierbiszewski, Czesław</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of high nitrogen flux in InAlN growth by plasma-assisted molecular beam epitaxy</atitle><jtitle>Journal of crystal growth</jtitle><date>2020-08-15</date><risdate>2020</risdate><volume>544</volume><spage>125720</spage><pages>125720-</pages><artnum>125720</artnum><issn>0022-0248</issn><eissn>1873-5002</eissn><abstract>•High N-flux stabilizes In-N bonds in InAlN.•InAlN lattice-matched to GaN was grown at 605 °C by MBE.•InAlN indium content diagram is shown as a function of growth temperature and N-flux.•Honeycomb microstructure is observed for InAlN grown with low and high N-flux.•Increase of average cell size is observed for increased N-flux and growth temperature.
We study the impact of increased active nitrogen flux (N-flux) on the indium content and structural properties of InAlN layers grown by plasma-assisted molecular beam epitaxy. It is shown that high N-flux can stabilize In-N bonds, so that In0.18Al0.82N is grown at 605 °C, which is the highest reported temperature so far for the composition lattice-matched (LM) to GaN. Adiagram of InAlN indium content is shown as a function of growth temperature and N-flux. The InAlN layers grown using low and high N-flux had grainy surface morphology typical for N-rich conditions. Inhomogeneity in indium distribution on nanometer scale, i.e. typical honeycomb microstructure, is found for InAlN layers grown using both: low and high N-flux. An increase of average cell size is observed for LM-InAlN when the N-flux and growth temperature are increased.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2020.125720</doi><orcidid>https://orcid.org/0000-0003-0552-2169</orcidid><orcidid>https://orcid.org/0000-0002-6343-0281</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2020-08, Vol.544, p.125720, Article 125720 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_journals_2436433458 |
source | Elsevier |
subjects | A1. Atomic force microscopy A1. Reflection high energy electron diffraction A3. Molecular beam epitaxy B1. Nitrides B2. Semiconducting III-V materials Epitaxial growth Flux Indium Inhomogeneity Lattice matching Molecular beam epitaxy Morphology Nitrogen |
title | Role of high nitrogen flux in InAlN growth by plasma-assisted molecular beam epitaxy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20high%20nitrogen%20flux%20in%20InAlN%20growth%20by%20plasma-assisted%20molecular%20beam%20epitaxy&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Sawicka,%20Marta&rft.date=2020-08-15&rft.volume=544&rft.spage=125720&rft.pages=125720-&rft.artnum=125720&rft.issn=0022-0248&rft.eissn=1873-5002&rft_id=info:doi/10.1016/j.jcrysgro.2020.125720&rft_dat=%3Cproquest_cross%3E2436433458%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-ee86ef20f2efdcca00cf9f107f83fc85750d9464ee15f351a5e84d76927f0c763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2436433458&rft_id=info:pmid/&rfr_iscdi=true |