Loading…
Spatial and Temporal Patterns of δ13C and δ15N of Suspended Particulate Organic Matter in Maryland Coastal Bays, USA
The suspended particulate organic matter (SPOM) in transitional waters such as the Maryland Coastal Bays (MCBs) is derived from allochthonous and autochthonous sources. Little is known, however, about the contribution of terrestrially derived organic matter to SPOM in the MCBs. The sources of SPOM i...
Saved in:
Published in: | Water (Basel) 2020-08, Vol.12 (9), p.2345 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The suspended particulate organic matter (SPOM) in transitional waters such as the Maryland Coastal Bays (MCBs) is derived from allochthonous and autochthonous sources. Little is known, however, about the contribution of terrestrially derived organic matter to SPOM in the MCBs. The sources of SPOM in the MCBs were evaluated using stable isotope ratios of nitrogen (δ15N) and carbon (δ13C), and C/N molar ratios. The values of SPOM δ15N, δ13C and C/N ratios from samples collected seasonally (July 2014 to October 2017) at 13 sites ranged from −0.58 to 10.51‰, −26.85 to −20.33‰, and 1.67 to 11.36, respectively, indicating a mixture of terrestrial SPOM transported by tributaries, marine organic matter from phytoplankton, and sewage. SPOM δ13C levels less than −24‰, suggesting the dominance of terrestrially derived carbon, occurred mainly at sites close to the mouths of tributaries, and were less depleted at sites near the ocean. The mean value of SPOM δ13C was higher in October 2014 (−22.76‰) than in October 2015 (−24.65‰) and 2016 (−24.57‰) likely due to differences in river discharge. Much lower values ( |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w12092345 |