Loading…
Hydrogen Atom Transfer Reaction Free Energy as a Predictor of Abiotic Nitroaromatic Reduction Rate Constants: A Comprehensive Analysis
A linear free energy model is presented that predicts the second‐order rate constant for the abiotic reduction of nitroaromatic compounds (NACs). Previously presented models use the one‐electron reduction potential EH1(ArNO2) of the NAC reaction ArNO2+e−→ArNO2•−. If EH1(ArNO2) is not available, it h...
Saved in:
Published in: | Environmental toxicology and chemistry 2020-09, Vol.39 (9), p.1678-1684 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4207-ffcfba4873bf39dddb02f91f03f385fa2bb690a4b77da2b30d8a7a69a97583813 |
---|---|
cites | cdi_FETCH-LOGICAL-c4207-ffcfba4873bf39dddb02f91f03f385fa2bb690a4b77da2b30d8a7a69a97583813 |
container_end_page | 1684 |
container_issue | 9 |
container_start_page | 1678 |
container_title | Environmental toxicology and chemistry |
container_volume | 39 |
creator | Di Toro, Dominic M. Hickey, Kevin P. Allen, Herbert E. Carbonaro, Richard F. Chiu, Pei C. |
description | A linear free energy model is presented that predicts the second‐order rate constant for the abiotic reduction of nitroaromatic compounds (NACs). Previously presented models use the one‐electron reduction potential EH1(ArNO2) of the NAC reaction ArNO2+e−→ArNO2•−. If EH1(ArNO2) is not available, it has been proposed that EH1(ArNO2) be computed directly or estimated from the gas‐phase electron affinity (EA). The model proposed uses the Gibbs free energy of the hydrogen atom transfer (HAT) reaction ArNO2+H•→ArNOOH• as the parameter in the linear free energy model. Both models employ quantum chemical computations for the required thermodynamic energies. The available and proposed models are compared using experimentally determined second‐order rate constants from 5 investigations from the literature in which a variety of NACs were exposed to a variety of reductants. A comprehensive analysis utilizing all the NACs and reductants demonstrate that the HAT energy model and the experimental one‐electron reduction potential model have similar root mean square errors and residual error probability distributions. In contrast, the model using the computed EA has a more variable residual error distribution with a significant number of outliers. The results suggest that a linear free energy model utilizing computed HAT reaction free energy produces a more reliable prediction of the NAC abiotic reduction second‐order rate constant than previously available methods. The advantages of the proposed HAT energy model and its mechanistic implications are discussed as well. Environ Toxicol Chem 2020;39:1678–1684. © 2020 SETAC |
doi_str_mv | 10.1002/etc.4807 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2436809378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436809378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4207-ffcfba4873bf39dddb02f91f03f385fa2bb690a4b77da2b30d8a7a69a97583813</originalsourceid><addsrcrecordid>eNp1kNFq2zAUhkVZabN0sCcYgt3sxqlk2Za0OxPStRDaErprc2wddSqxlUlKh19gzz2n6XrXK_HDdz7ER8hnzhacsfwSU7coFJMnZMbLMs9UxdUHMmNSsEzmlTonH2N8YoxXWuszci7yUguu5Iz8vR5N8I840Dr5nj4EGKLFQDcIXXJ-oFcBka4GDI8jhUiB3gc0rks-UG9p3TqfXEdvXQoegu_hsDZo9sfrDSSkSz_EBEOK32k9jX4X8BcO0T0jrQfYjtHFC3JqYRvx0-s7Jz-vVg_L62x99-NmWa-zrsiZzKztbAuFkqK1QhtjWpZbzS0TVqjSQt62lWZQtFKaaQhmFEioNGhZKqG4mJOvR-8u-N97jKl58vswfSI2eSEqxbSQaqK-Haku-BgD2mYXXA9hbDhrDsGbKXhzCD6hX16F-7ZH8wb-LzwB2RH447Y4vitqJuZF-A_gvotW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436809378</pqid></control><display><type>article</type><title>Hydrogen Atom Transfer Reaction Free Energy as a Predictor of Abiotic Nitroaromatic Reduction Rate Constants: A Comprehensive Analysis</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Di Toro, Dominic M. ; Hickey, Kevin P. ; Allen, Herbert E. ; Carbonaro, Richard F. ; Chiu, Pei C.</creator><creatorcontrib>Di Toro, Dominic M. ; Hickey, Kevin P. ; Allen, Herbert E. ; Carbonaro, Richard F. ; Chiu, Pei C.</creatorcontrib><description>A linear free energy model is presented that predicts the second‐order rate constant for the abiotic reduction of nitroaromatic compounds (NACs). Previously presented models use the one‐electron reduction potential EH1(ArNO2) of the NAC reaction ArNO2+e−→ArNO2•−. If EH1(ArNO2) is not available, it has been proposed that EH1(ArNO2) be computed directly or estimated from the gas‐phase electron affinity (EA). The model proposed uses the Gibbs free energy of the hydrogen atom transfer (HAT) reaction ArNO2+H•→ArNOOH• as the parameter in the linear free energy model. Both models employ quantum chemical computations for the required thermodynamic energies. The available and proposed models are compared using experimentally determined second‐order rate constants from 5 investigations from the literature in which a variety of NACs were exposed to a variety of reductants. A comprehensive analysis utilizing all the NACs and reductants demonstrate that the HAT energy model and the experimental one‐electron reduction potential model have similar root mean square errors and residual error probability distributions. In contrast, the model using the computed EA has a more variable residual error distribution with a significant number of outliers. The results suggest that a linear free energy model utilizing computed HAT reaction free energy produces a more reliable prediction of the NAC abiotic reduction second‐order rate constant than previously available methods. The advantages of the proposed HAT energy model and its mechanistic implications are discussed as well. Environ Toxicol Chem 2020;39:1678–1684. © 2020 SETAC</description><identifier>ISSN: 0730-7268</identifier><identifier>EISSN: 1552-8618</identifier><identifier>DOI: 10.1002/etc.4807</identifier><identifier>PMID: 32593187</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Abiotic transformation ; Computation ; Electrode potentials ; Electron affinity ; Electrons ; Energy ; Environmental modeling ; Fate modeling ; Free energy ; Gibbs free energy ; Hydrocarbons, Aromatic - chemistry ; Hydrogen - chemistry ; Hydrogen-based energy ; Kinetics ; Nitro Compounds - chemistry ; Outliers (statistics) ; Oxidation-Reduction ; Quantum chemistry ; Rate constants ; Reducing agents ; Thermodynamics</subject><ispartof>Environmental toxicology and chemistry, 2020-09, Vol.39 (9), p.1678-1684</ispartof><rights>2020 SETAC</rights><rights>2020 SETAC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4207-ffcfba4873bf39dddb02f91f03f385fa2bb690a4b77da2b30d8a7a69a97583813</citedby><cites>FETCH-LOGICAL-c4207-ffcfba4873bf39dddb02f91f03f385fa2bb690a4b77da2b30d8a7a69a97583813</cites><orcidid>0000-0002-6997-6760</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32593187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Toro, Dominic M.</creatorcontrib><creatorcontrib>Hickey, Kevin P.</creatorcontrib><creatorcontrib>Allen, Herbert E.</creatorcontrib><creatorcontrib>Carbonaro, Richard F.</creatorcontrib><creatorcontrib>Chiu, Pei C.</creatorcontrib><title>Hydrogen Atom Transfer Reaction Free Energy as a Predictor of Abiotic Nitroaromatic Reduction Rate Constants: A Comprehensive Analysis</title><title>Environmental toxicology and chemistry</title><addtitle>Environ Toxicol Chem</addtitle><description>A linear free energy model is presented that predicts the second‐order rate constant for the abiotic reduction of nitroaromatic compounds (NACs). Previously presented models use the one‐electron reduction potential EH1(ArNO2) of the NAC reaction ArNO2+e−→ArNO2•−. If EH1(ArNO2) is not available, it has been proposed that EH1(ArNO2) be computed directly or estimated from the gas‐phase electron affinity (EA). The model proposed uses the Gibbs free energy of the hydrogen atom transfer (HAT) reaction ArNO2+H•→ArNOOH• as the parameter in the linear free energy model. Both models employ quantum chemical computations for the required thermodynamic energies. The available and proposed models are compared using experimentally determined second‐order rate constants from 5 investigations from the literature in which a variety of NACs were exposed to a variety of reductants. A comprehensive analysis utilizing all the NACs and reductants demonstrate that the HAT energy model and the experimental one‐electron reduction potential model have similar root mean square errors and residual error probability distributions. In contrast, the model using the computed EA has a more variable residual error distribution with a significant number of outliers. The results suggest that a linear free energy model utilizing computed HAT reaction free energy produces a more reliable prediction of the NAC abiotic reduction second‐order rate constant than previously available methods. The advantages of the proposed HAT energy model and its mechanistic implications are discussed as well. Environ Toxicol Chem 2020;39:1678–1684. © 2020 SETAC</description><subject>Abiotic transformation</subject><subject>Computation</subject><subject>Electrode potentials</subject><subject>Electron affinity</subject><subject>Electrons</subject><subject>Energy</subject><subject>Environmental modeling</subject><subject>Fate modeling</subject><subject>Free energy</subject><subject>Gibbs free energy</subject><subject>Hydrocarbons, Aromatic - chemistry</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen-based energy</subject><subject>Kinetics</subject><subject>Nitro Compounds - chemistry</subject><subject>Outliers (statistics)</subject><subject>Oxidation-Reduction</subject><subject>Quantum chemistry</subject><subject>Rate constants</subject><subject>Reducing agents</subject><subject>Thermodynamics</subject><issn>0730-7268</issn><issn>1552-8618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kNFq2zAUhkVZabN0sCcYgt3sxqlk2Za0OxPStRDaErprc2wddSqxlUlKh19gzz2n6XrXK_HDdz7ER8hnzhacsfwSU7coFJMnZMbLMs9UxdUHMmNSsEzmlTonH2N8YoxXWuszci7yUguu5Iz8vR5N8I840Dr5nj4EGKLFQDcIXXJ-oFcBka4GDI8jhUiB3gc0rks-UG9p3TqfXEdvXQoegu_hsDZo9sfrDSSkSz_EBEOK32k9jX4X8BcO0T0jrQfYjtHFC3JqYRvx0-s7Jz-vVg_L62x99-NmWa-zrsiZzKztbAuFkqK1QhtjWpZbzS0TVqjSQt62lWZQtFKaaQhmFEioNGhZKqG4mJOvR-8u-N97jKl58vswfSI2eSEqxbSQaqK-Haku-BgD2mYXXA9hbDhrDsGbKXhzCD6hX16F-7ZH8wb-LzwB2RH447Y4vitqJuZF-A_gvotW</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Di Toro, Dominic M.</creator><creator>Hickey, Kevin P.</creator><creator>Allen, Herbert E.</creator><creator>Carbonaro, Richard F.</creator><creator>Chiu, Pei C.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6997-6760</orcidid></search><sort><creationdate>202009</creationdate><title>Hydrogen Atom Transfer Reaction Free Energy as a Predictor of Abiotic Nitroaromatic Reduction Rate Constants: A Comprehensive Analysis</title><author>Di Toro, Dominic M. ; Hickey, Kevin P. ; Allen, Herbert E. ; Carbonaro, Richard F. ; Chiu, Pei C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4207-ffcfba4873bf39dddb02f91f03f385fa2bb690a4b77da2b30d8a7a69a97583813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abiotic transformation</topic><topic>Computation</topic><topic>Electrode potentials</topic><topic>Electron affinity</topic><topic>Electrons</topic><topic>Energy</topic><topic>Environmental modeling</topic><topic>Fate modeling</topic><topic>Free energy</topic><topic>Gibbs free energy</topic><topic>Hydrocarbons, Aromatic - chemistry</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen-based energy</topic><topic>Kinetics</topic><topic>Nitro Compounds - chemistry</topic><topic>Outliers (statistics)</topic><topic>Oxidation-Reduction</topic><topic>Quantum chemistry</topic><topic>Rate constants</topic><topic>Reducing agents</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Toro, Dominic M.</creatorcontrib><creatorcontrib>Hickey, Kevin P.</creatorcontrib><creatorcontrib>Allen, Herbert E.</creatorcontrib><creatorcontrib>Carbonaro, Richard F.</creatorcontrib><creatorcontrib>Chiu, Pei C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental toxicology and chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Toro, Dominic M.</au><au>Hickey, Kevin P.</au><au>Allen, Herbert E.</au><au>Carbonaro, Richard F.</au><au>Chiu, Pei C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen Atom Transfer Reaction Free Energy as a Predictor of Abiotic Nitroaromatic Reduction Rate Constants: A Comprehensive Analysis</atitle><jtitle>Environmental toxicology and chemistry</jtitle><addtitle>Environ Toxicol Chem</addtitle><date>2020-09</date><risdate>2020</risdate><volume>39</volume><issue>9</issue><spage>1678</spage><epage>1684</epage><pages>1678-1684</pages><issn>0730-7268</issn><eissn>1552-8618</eissn><abstract>A linear free energy model is presented that predicts the second‐order rate constant for the abiotic reduction of nitroaromatic compounds (NACs). Previously presented models use the one‐electron reduction potential EH1(ArNO2) of the NAC reaction ArNO2+e−→ArNO2•−. If EH1(ArNO2) is not available, it has been proposed that EH1(ArNO2) be computed directly or estimated from the gas‐phase electron affinity (EA). The model proposed uses the Gibbs free energy of the hydrogen atom transfer (HAT) reaction ArNO2+H•→ArNOOH• as the parameter in the linear free energy model. Both models employ quantum chemical computations for the required thermodynamic energies. The available and proposed models are compared using experimentally determined second‐order rate constants from 5 investigations from the literature in which a variety of NACs were exposed to a variety of reductants. A comprehensive analysis utilizing all the NACs and reductants demonstrate that the HAT energy model and the experimental one‐electron reduction potential model have similar root mean square errors and residual error probability distributions. In contrast, the model using the computed EA has a more variable residual error distribution with a significant number of outliers. The results suggest that a linear free energy model utilizing computed HAT reaction free energy produces a more reliable prediction of the NAC abiotic reduction second‐order rate constant than previously available methods. The advantages of the proposed HAT energy model and its mechanistic implications are discussed as well. Environ Toxicol Chem 2020;39:1678–1684. © 2020 SETAC</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>32593187</pmid><doi>10.1002/etc.4807</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6997-6760</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-7268 |
ispartof | Environmental toxicology and chemistry, 2020-09, Vol.39 (9), p.1678-1684 |
issn | 0730-7268 1552-8618 |
language | eng |
recordid | cdi_proquest_journals_2436809378 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Abiotic transformation Computation Electrode potentials Electron affinity Electrons Energy Environmental modeling Fate modeling Free energy Gibbs free energy Hydrocarbons, Aromatic - chemistry Hydrogen - chemistry Hydrogen-based energy Kinetics Nitro Compounds - chemistry Outliers (statistics) Oxidation-Reduction Quantum chemistry Rate constants Reducing agents Thermodynamics |
title | Hydrogen Atom Transfer Reaction Free Energy as a Predictor of Abiotic Nitroaromatic Reduction Rate Constants: A Comprehensive Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20Atom%20Transfer%20Reaction%20Free%20Energy%20as%20a%20Predictor%20of%20Abiotic%20Nitroaromatic%20Reduction%20Rate%20Constants:%20A%20Comprehensive%20Analysis&rft.jtitle=Environmental%20toxicology%20and%20chemistry&rft.au=Di%20Toro,%20Dominic%20M.&rft.date=2020-09&rft.volume=39&rft.issue=9&rft.spage=1678&rft.epage=1684&rft.pages=1678-1684&rft.issn=0730-7268&rft.eissn=1552-8618&rft_id=info:doi/10.1002/etc.4807&rft_dat=%3Cproquest_cross%3E2436809378%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4207-ffcfba4873bf39dddb02f91f03f385fa2bb690a4b77da2b30d8a7a69a97583813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2436809378&rft_id=info:pmid/32593187&rfr_iscdi=true |