Loading…

Hydrogen Atom Transfer Reaction Free Energy as a Predictor of Abiotic Nitroaromatic Reduction Rate Constants: A Comprehensive Analysis

A linear free energy model is presented that predicts the second‐order rate constant for the abiotic reduction of nitroaromatic compounds (NACs). Previously presented models use the one‐electron reduction potential EH1(ArNO2) of the NAC reaction ArNO2+e−→ArNO2•−. If EH1(ArNO2) is not available, it h...

Full description

Saved in:
Bibliographic Details
Published in:Environmental toxicology and chemistry 2020-09, Vol.39 (9), p.1678-1684
Main Authors: Di Toro, Dominic M., Hickey, Kevin P., Allen, Herbert E., Carbonaro, Richard F., Chiu, Pei C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4207-ffcfba4873bf39dddb02f91f03f385fa2bb690a4b77da2b30d8a7a69a97583813
cites cdi_FETCH-LOGICAL-c4207-ffcfba4873bf39dddb02f91f03f385fa2bb690a4b77da2b30d8a7a69a97583813
container_end_page 1684
container_issue 9
container_start_page 1678
container_title Environmental toxicology and chemistry
container_volume 39
creator Di Toro, Dominic M.
Hickey, Kevin P.
Allen, Herbert E.
Carbonaro, Richard F.
Chiu, Pei C.
description A linear free energy model is presented that predicts the second‐order rate constant for the abiotic reduction of nitroaromatic compounds (NACs). Previously presented models use the one‐electron reduction potential EH1(ArNO2) of the NAC reaction ArNO2+e−→ArNO2•−. If EH1(ArNO2) is not available, it has been proposed that EH1(ArNO2) be computed directly or estimated from the gas‐phase electron affinity (EA). The model proposed uses the Gibbs free energy of the hydrogen atom transfer (HAT) reaction ArNO2+H•→ArNOOH• as the parameter in the linear free energy model. Both models employ quantum chemical computations for the required thermodynamic energies. The available and proposed models are compared using experimentally determined second‐order rate constants from 5 investigations from the literature in which a variety of NACs were exposed to a variety of reductants. A comprehensive analysis utilizing all the NACs and reductants demonstrate that the HAT energy model and the experimental one‐electron reduction potential model have similar root mean square errors and residual error probability distributions. In contrast, the model using the computed EA has a more variable residual error distribution with a significant number of outliers. The results suggest that a linear free energy model utilizing computed HAT reaction free energy produces a more reliable prediction of the NAC abiotic reduction second‐order rate constant than previously available methods. The advantages of the proposed HAT energy model and its mechanistic implications are discussed as well. Environ Toxicol Chem 2020;39:1678–1684. © 2020 SETAC
doi_str_mv 10.1002/etc.4807
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2436809378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436809378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4207-ffcfba4873bf39dddb02f91f03f385fa2bb690a4b77da2b30d8a7a69a97583813</originalsourceid><addsrcrecordid>eNp1kNFq2zAUhkVZabN0sCcYgt3sxqlk2Za0OxPStRDaErprc2wddSqxlUlKh19gzz2n6XrXK_HDdz7ER8hnzhacsfwSU7coFJMnZMbLMs9UxdUHMmNSsEzmlTonH2N8YoxXWuszci7yUguu5Iz8vR5N8I840Dr5nj4EGKLFQDcIXXJ-oFcBka4GDI8jhUiB3gc0rks-UG9p3TqfXEdvXQoegu_hsDZo9sfrDSSkSz_EBEOK32k9jX4X8BcO0T0jrQfYjtHFC3JqYRvx0-s7Jz-vVg_L62x99-NmWa-zrsiZzKztbAuFkqK1QhtjWpZbzS0TVqjSQt62lWZQtFKaaQhmFEioNGhZKqG4mJOvR-8u-N97jKl58vswfSI2eSEqxbSQaqK-Haku-BgD2mYXXA9hbDhrDsGbKXhzCD6hX16F-7ZH8wb-LzwB2RH447Y4vitqJuZF-A_gvotW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436809378</pqid></control><display><type>article</type><title>Hydrogen Atom Transfer Reaction Free Energy as a Predictor of Abiotic Nitroaromatic Reduction Rate Constants: A Comprehensive Analysis</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Di Toro, Dominic M. ; Hickey, Kevin P. ; Allen, Herbert E. ; Carbonaro, Richard F. ; Chiu, Pei C.</creator><creatorcontrib>Di Toro, Dominic M. ; Hickey, Kevin P. ; Allen, Herbert E. ; Carbonaro, Richard F. ; Chiu, Pei C.</creatorcontrib><description>A linear free energy model is presented that predicts the second‐order rate constant for the abiotic reduction of nitroaromatic compounds (NACs). Previously presented models use the one‐electron reduction potential EH1(ArNO2) of the NAC reaction ArNO2+e−→ArNO2•−. If EH1(ArNO2) is not available, it has been proposed that EH1(ArNO2) be computed directly or estimated from the gas‐phase electron affinity (EA). The model proposed uses the Gibbs free energy of the hydrogen atom transfer (HAT) reaction ArNO2+H•→ArNOOH• as the parameter in the linear free energy model. Both models employ quantum chemical computations for the required thermodynamic energies. The available and proposed models are compared using experimentally determined second‐order rate constants from 5 investigations from the literature in which a variety of NACs were exposed to a variety of reductants. A comprehensive analysis utilizing all the NACs and reductants demonstrate that the HAT energy model and the experimental one‐electron reduction potential model have similar root mean square errors and residual error probability distributions. In contrast, the model using the computed EA has a more variable residual error distribution with a significant number of outliers. The results suggest that a linear free energy model utilizing computed HAT reaction free energy produces a more reliable prediction of the NAC abiotic reduction second‐order rate constant than previously available methods. The advantages of the proposed HAT energy model and its mechanistic implications are discussed as well. Environ Toxicol Chem 2020;39:1678–1684. © 2020 SETAC</description><identifier>ISSN: 0730-7268</identifier><identifier>EISSN: 1552-8618</identifier><identifier>DOI: 10.1002/etc.4807</identifier><identifier>PMID: 32593187</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Abiotic transformation ; Computation ; Electrode potentials ; Electron affinity ; Electrons ; Energy ; Environmental modeling ; Fate modeling ; Free energy ; Gibbs free energy ; Hydrocarbons, Aromatic - chemistry ; Hydrogen - chemistry ; Hydrogen-based energy ; Kinetics ; Nitro Compounds - chemistry ; Outliers (statistics) ; Oxidation-Reduction ; Quantum chemistry ; Rate constants ; Reducing agents ; Thermodynamics</subject><ispartof>Environmental toxicology and chemistry, 2020-09, Vol.39 (9), p.1678-1684</ispartof><rights>2020 SETAC</rights><rights>2020 SETAC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4207-ffcfba4873bf39dddb02f91f03f385fa2bb690a4b77da2b30d8a7a69a97583813</citedby><cites>FETCH-LOGICAL-c4207-ffcfba4873bf39dddb02f91f03f385fa2bb690a4b77da2b30d8a7a69a97583813</cites><orcidid>0000-0002-6997-6760</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32593187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Toro, Dominic M.</creatorcontrib><creatorcontrib>Hickey, Kevin P.</creatorcontrib><creatorcontrib>Allen, Herbert E.</creatorcontrib><creatorcontrib>Carbonaro, Richard F.</creatorcontrib><creatorcontrib>Chiu, Pei C.</creatorcontrib><title>Hydrogen Atom Transfer Reaction Free Energy as a Predictor of Abiotic Nitroaromatic Reduction Rate Constants: A Comprehensive Analysis</title><title>Environmental toxicology and chemistry</title><addtitle>Environ Toxicol Chem</addtitle><description>A linear free energy model is presented that predicts the second‐order rate constant for the abiotic reduction of nitroaromatic compounds (NACs). Previously presented models use the one‐electron reduction potential EH1(ArNO2) of the NAC reaction ArNO2+e−→ArNO2•−. If EH1(ArNO2) is not available, it has been proposed that EH1(ArNO2) be computed directly or estimated from the gas‐phase electron affinity (EA). The model proposed uses the Gibbs free energy of the hydrogen atom transfer (HAT) reaction ArNO2+H•→ArNOOH• as the parameter in the linear free energy model. Both models employ quantum chemical computations for the required thermodynamic energies. The available and proposed models are compared using experimentally determined second‐order rate constants from 5 investigations from the literature in which a variety of NACs were exposed to a variety of reductants. A comprehensive analysis utilizing all the NACs and reductants demonstrate that the HAT energy model and the experimental one‐electron reduction potential model have similar root mean square errors and residual error probability distributions. In contrast, the model using the computed EA has a more variable residual error distribution with a significant number of outliers. The results suggest that a linear free energy model utilizing computed HAT reaction free energy produces a more reliable prediction of the NAC abiotic reduction second‐order rate constant than previously available methods. The advantages of the proposed HAT energy model and its mechanistic implications are discussed as well. Environ Toxicol Chem 2020;39:1678–1684. © 2020 SETAC</description><subject>Abiotic transformation</subject><subject>Computation</subject><subject>Electrode potentials</subject><subject>Electron affinity</subject><subject>Electrons</subject><subject>Energy</subject><subject>Environmental modeling</subject><subject>Fate modeling</subject><subject>Free energy</subject><subject>Gibbs free energy</subject><subject>Hydrocarbons, Aromatic - chemistry</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen-based energy</subject><subject>Kinetics</subject><subject>Nitro Compounds - chemistry</subject><subject>Outliers (statistics)</subject><subject>Oxidation-Reduction</subject><subject>Quantum chemistry</subject><subject>Rate constants</subject><subject>Reducing agents</subject><subject>Thermodynamics</subject><issn>0730-7268</issn><issn>1552-8618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kNFq2zAUhkVZabN0sCcYgt3sxqlk2Za0OxPStRDaErprc2wddSqxlUlKh19gzz2n6XrXK_HDdz7ER8hnzhacsfwSU7coFJMnZMbLMs9UxdUHMmNSsEzmlTonH2N8YoxXWuszci7yUguu5Iz8vR5N8I840Dr5nj4EGKLFQDcIXXJ-oFcBka4GDI8jhUiB3gc0rks-UG9p3TqfXEdvXQoegu_hsDZo9sfrDSSkSz_EBEOK32k9jX4X8BcO0T0jrQfYjtHFC3JqYRvx0-s7Jz-vVg_L62x99-NmWa-zrsiZzKztbAuFkqK1QhtjWpZbzS0TVqjSQt62lWZQtFKaaQhmFEioNGhZKqG4mJOvR-8u-N97jKl58vswfSI2eSEqxbSQaqK-Haku-BgD2mYXXA9hbDhrDsGbKXhzCD6hX16F-7ZH8wb-LzwB2RH447Y4vitqJuZF-A_gvotW</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Di Toro, Dominic M.</creator><creator>Hickey, Kevin P.</creator><creator>Allen, Herbert E.</creator><creator>Carbonaro, Richard F.</creator><creator>Chiu, Pei C.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6997-6760</orcidid></search><sort><creationdate>202009</creationdate><title>Hydrogen Atom Transfer Reaction Free Energy as a Predictor of Abiotic Nitroaromatic Reduction Rate Constants: A Comprehensive Analysis</title><author>Di Toro, Dominic M. ; Hickey, Kevin P. ; Allen, Herbert E. ; Carbonaro, Richard F. ; Chiu, Pei C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4207-ffcfba4873bf39dddb02f91f03f385fa2bb690a4b77da2b30d8a7a69a97583813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abiotic transformation</topic><topic>Computation</topic><topic>Electrode potentials</topic><topic>Electron affinity</topic><topic>Electrons</topic><topic>Energy</topic><topic>Environmental modeling</topic><topic>Fate modeling</topic><topic>Free energy</topic><topic>Gibbs free energy</topic><topic>Hydrocarbons, Aromatic - chemistry</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen-based energy</topic><topic>Kinetics</topic><topic>Nitro Compounds - chemistry</topic><topic>Outliers (statistics)</topic><topic>Oxidation-Reduction</topic><topic>Quantum chemistry</topic><topic>Rate constants</topic><topic>Reducing agents</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Toro, Dominic M.</creatorcontrib><creatorcontrib>Hickey, Kevin P.</creatorcontrib><creatorcontrib>Allen, Herbert E.</creatorcontrib><creatorcontrib>Carbonaro, Richard F.</creatorcontrib><creatorcontrib>Chiu, Pei C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental toxicology and chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Toro, Dominic M.</au><au>Hickey, Kevin P.</au><au>Allen, Herbert E.</au><au>Carbonaro, Richard F.</au><au>Chiu, Pei C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen Atom Transfer Reaction Free Energy as a Predictor of Abiotic Nitroaromatic Reduction Rate Constants: A Comprehensive Analysis</atitle><jtitle>Environmental toxicology and chemistry</jtitle><addtitle>Environ Toxicol Chem</addtitle><date>2020-09</date><risdate>2020</risdate><volume>39</volume><issue>9</issue><spage>1678</spage><epage>1684</epage><pages>1678-1684</pages><issn>0730-7268</issn><eissn>1552-8618</eissn><abstract>A linear free energy model is presented that predicts the second‐order rate constant for the abiotic reduction of nitroaromatic compounds (NACs). Previously presented models use the one‐electron reduction potential EH1(ArNO2) of the NAC reaction ArNO2+e−→ArNO2•−. If EH1(ArNO2) is not available, it has been proposed that EH1(ArNO2) be computed directly or estimated from the gas‐phase electron affinity (EA). The model proposed uses the Gibbs free energy of the hydrogen atom transfer (HAT) reaction ArNO2+H•→ArNOOH• as the parameter in the linear free energy model. Both models employ quantum chemical computations for the required thermodynamic energies. The available and proposed models are compared using experimentally determined second‐order rate constants from 5 investigations from the literature in which a variety of NACs were exposed to a variety of reductants. A comprehensive analysis utilizing all the NACs and reductants demonstrate that the HAT energy model and the experimental one‐electron reduction potential model have similar root mean square errors and residual error probability distributions. In contrast, the model using the computed EA has a more variable residual error distribution with a significant number of outliers. The results suggest that a linear free energy model utilizing computed HAT reaction free energy produces a more reliable prediction of the NAC abiotic reduction second‐order rate constant than previously available methods. The advantages of the proposed HAT energy model and its mechanistic implications are discussed as well. Environ Toxicol Chem 2020;39:1678–1684. © 2020 SETAC</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>32593187</pmid><doi>10.1002/etc.4807</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6997-6760</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0730-7268
ispartof Environmental toxicology and chemistry, 2020-09, Vol.39 (9), p.1678-1684
issn 0730-7268
1552-8618
language eng
recordid cdi_proquest_journals_2436809378
source Wiley-Blackwell Read & Publish Collection
subjects Abiotic transformation
Computation
Electrode potentials
Electron affinity
Electrons
Energy
Environmental modeling
Fate modeling
Free energy
Gibbs free energy
Hydrocarbons, Aromatic - chemistry
Hydrogen - chemistry
Hydrogen-based energy
Kinetics
Nitro Compounds - chemistry
Outliers (statistics)
Oxidation-Reduction
Quantum chemistry
Rate constants
Reducing agents
Thermodynamics
title Hydrogen Atom Transfer Reaction Free Energy as a Predictor of Abiotic Nitroaromatic Reduction Rate Constants: A Comprehensive Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20Atom%20Transfer%20Reaction%20Free%20Energy%20as%20a%20Predictor%20of%20Abiotic%20Nitroaromatic%20Reduction%20Rate%20Constants:%20A%20Comprehensive%20Analysis&rft.jtitle=Environmental%20toxicology%20and%20chemistry&rft.au=Di%20Toro,%20Dominic%20M.&rft.date=2020-09&rft.volume=39&rft.issue=9&rft.spage=1678&rft.epage=1684&rft.pages=1678-1684&rft.issn=0730-7268&rft.eissn=1552-8618&rft_id=info:doi/10.1002/etc.4807&rft_dat=%3Cproquest_cross%3E2436809378%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4207-ffcfba4873bf39dddb02f91f03f385fa2bb690a4b77da2b30d8a7a69a97583813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2436809378&rft_id=info:pmid/32593187&rfr_iscdi=true