Loading…
PQ-RRT: An improved path planning algorithm for mobile robots
•Propose a sampling-based asymptotically optimal path planning algorithm.•The proposed algorithm guarantees a fast convergence rate.•Theoretical proof of asymptotic optimality and fast convergence rate is given. During the last decade, sampling-based algorithms for path planning have gained consider...
Saved in:
Published in: | Expert systems with applications 2020-08, Vol.152, p.113425, Article 113425 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •Propose a sampling-based asymptotically optimal path planning algorithm.•The proposed algorithm guarantees a fast convergence rate.•Theoretical proof of asymptotic optimality and fast convergence rate is given.
During the last decade, sampling-based algorithms for path planning have gained considerable attention. The RRT*, a variant of RRT (rapidly-exploring random trees), is of particular concern to researchers due to its asymptotic optimality. However, the limits of the slow convergence rate of RRT* makes it inefficient for applications. For the purposes of overcoming these limitations, this paper proposes a novel algorithm, PQ-RRT*, which combines the strengths of P-RRT* (potential functions based RRT*) and Quick-RRT*. PQ-RRT* guarantees a fast convergence to an optimal solution and generates a better initial solution. The asymptotic optimality and fast convergence of the proposed algorithm are proved in this paper. Comparisons of PQ-RRT* with P-RRT* and Quick-RRT* in four benchmarks verify the effectiveness of the proposed algorithm. |
---|---|
ISSN: | 0957-4174 1873-6793 |
DOI: | 10.1016/j.eswa.2020.113425 |