Loading…
Formation of the Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile: insights from Fe and O stable isotopes and comparisons with iron oxide-apatite (IOA) deposits
The Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile, contains hundreds of millions of tonnes (Mt) of mineable iron oxide and copper sulfide ore. While there is an agreement that mineralization at Mantoverde was caused by hydrothermal fluid(s), there is a lack of consensus for the role(s) tha...
Saved in:
Published in: | Mineralium deposita 2020-10, Vol.55 (7), p.1489-1504 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a342t-ed22ed3ceaedf94858e02660822d9530538bd0c8de7a5858c608a9a58bd4c7e33 |
---|---|
cites | cdi_FETCH-LOGICAL-a342t-ed22ed3ceaedf94858e02660822d9530538bd0c8de7a5858c608a9a58bd4c7e33 |
container_end_page | 1504 |
container_issue | 7 |
container_start_page | 1489 |
container_title | Mineralium deposita |
container_volume | 55 |
creator | Childress, Tristan M. Simon, Adam C. Reich, Martin Barra, Fernando Arce, Mauricio Lundstrom, Craig C. Bindeman, Ilya N. |
description | The Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile, contains hundreds of millions of tonnes (Mt) of mineable iron oxide and copper sulfide ore. While there is an agreement that mineralization at Mantoverde was caused by hydrothermal fluid(s), there is a lack of consensus for the role(s) that non-magmatic vs. magmatic fluid(s) played during the evolution of the mineralized system. In order to overcome the hydrothermal overprint at Mantoverde, which is known to disturb most conventional stable isotope systems (e.g., oxygen), we report the first δ
56
Fe and δ
18
O pairs for early-stage magnetite and late-stage hematite that provide information on the source reservoir of the hydrothermal fluids. Magnetite δ
56
Fe values range from 0.46 ± 0.04 to 0.58 ± 0.02‰ and average 0.51 ± 0.16‰ (
n
= 10; 2
σ
). Three hematite δ
56
Fe values were measured to be 0.34 ± 0.10, 0.42 ± 0.09, and 0.46 ± 0.06. Magnetite δ
18
O values range from 0.69 ± 0.04 to 4.61 ± 0.05‰ and average 2.99 ± 2.70‰ (
n
= 9; 2
σ
). Hematite δ
18
O values range from − 1.36 ± 0.05 to 5.57 ± 0.05‰ and average 0.10 ± 5.38‰ (
n
= 6; 2
σ
). These new δ
56
Fe and δ
18
O values fingerprint a magmatic-hydrothermal fluid as the predominant ore-forming fluid responsible for mineralization in the Mantoverde system. |
doi_str_mv | 10.1007/s00126-019-00936-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2437645831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437645831</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-ed22ed3ceaedf94858e02660822d9530538bd0c8de7a5858c608a9a58bd4c7e33</originalsourceid><addsrcrecordid>eNp9UU1PwjAYbowmIvoHPDXxoonVfmxj82YWQRIMFz03ZX0HJWOdbVH8Rf5NCxj15KnN89nmQeic0RtG6eDWU8p4RigrCKWFyMjmAPVYIjhheZYdoh6lkU7SIj9GJ94vaVSxhPbQ59C6lQrGttjWOCwAP6k22DdwGrBxW3hjNJDKdh04MreNxpfjaTm6who66024xuXCNHCHTevNfBE8rp1d4SFg1Wo8xT6oWROzvA22A79DK7vqlItQ6_G7CYu_TaqLzwmwbbn_KfGn6KhWjYez77OPXoYPz-UjmUxH4_J-QpRIeCCgOQctKlCg6yLJ0xzixzOac66LVNBU5DNNq1zDQKWRrSKlinid6aQagBB9dLHP7Zx9XYMPcmnXro2VkidikCVpLlhU8b2qctZ7B7XsnFkp9yEZldtB5H4QGQeRu0HkJprE3uSjuJ2D-43-x_UFlguQPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437645831</pqid></control><display><type>article</type><title>Formation of the Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile: insights from Fe and O stable isotopes and comparisons with iron oxide-apatite (IOA) deposits</title><source>Springer Link</source><creator>Childress, Tristan M. ; Simon, Adam C. ; Reich, Martin ; Barra, Fernando ; Arce, Mauricio ; Lundstrom, Craig C. ; Bindeman, Ilya N.</creator><creatorcontrib>Childress, Tristan M. ; Simon, Adam C. ; Reich, Martin ; Barra, Fernando ; Arce, Mauricio ; Lundstrom, Craig C. ; Bindeman, Ilya N.</creatorcontrib><description>The Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile, contains hundreds of millions of tonnes (Mt) of mineable iron oxide and copper sulfide ore. While there is an agreement that mineralization at Mantoverde was caused by hydrothermal fluid(s), there is a lack of consensus for the role(s) that non-magmatic vs. magmatic fluid(s) played during the evolution of the mineralized system. In order to overcome the hydrothermal overprint at Mantoverde, which is known to disturb most conventional stable isotope systems (e.g., oxygen), we report the first δ
56
Fe and δ
18
O pairs for early-stage magnetite and late-stage hematite that provide information on the source reservoir of the hydrothermal fluids. Magnetite δ
56
Fe values range from 0.46 ± 0.04 to 0.58 ± 0.02‰ and average 0.51 ± 0.16‰ (
n
= 10; 2
σ
). Three hematite δ
56
Fe values were measured to be 0.34 ± 0.10, 0.42 ± 0.09, and 0.46 ± 0.06. Magnetite δ
18
O values range from 0.69 ± 0.04 to 4.61 ± 0.05‰ and average 2.99 ± 2.70‰ (
n
= 9; 2
σ
). Hematite δ
18
O values range from − 1.36 ± 0.05 to 5.57 ± 0.05‰ and average 0.10 ± 5.38‰ (
n
= 6; 2
σ
). These new δ
56
Fe and δ
18
O values fingerprint a magmatic-hydrothermal fluid as the predominant ore-forming fluid responsible for mineralization in the Mantoverde system.</description><identifier>ISSN: 0026-4598</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-019-00936-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Apatite ; Copper ; Copper ores ; Copper sulfides ; Earth and Environmental Science ; Earth Sciences ; Fluids ; Geology ; Gold ; Haematite ; Hematite ; Iron oxides ; Isotopes ; Magnetite ; Mineral Resources ; Mineralization ; Mineralogy ; Stable isotopes ; Sulfides ; Sulphides</subject><ispartof>Mineralium deposita, 2020-10, Vol.55 (7), p.1489-1504</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-ed22ed3ceaedf94858e02660822d9530538bd0c8de7a5858c608a9a58bd4c7e33</citedby><cites>FETCH-LOGICAL-a342t-ed22ed3ceaedf94858e02660822d9530538bd0c8de7a5858c608a9a58bd4c7e33</cites><orcidid>0000-0002-2827-9379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Childress, Tristan M.</creatorcontrib><creatorcontrib>Simon, Adam C.</creatorcontrib><creatorcontrib>Reich, Martin</creatorcontrib><creatorcontrib>Barra, Fernando</creatorcontrib><creatorcontrib>Arce, Mauricio</creatorcontrib><creatorcontrib>Lundstrom, Craig C.</creatorcontrib><creatorcontrib>Bindeman, Ilya N.</creatorcontrib><title>Formation of the Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile: insights from Fe and O stable isotopes and comparisons with iron oxide-apatite (IOA) deposits</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>The Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile, contains hundreds of millions of tonnes (Mt) of mineable iron oxide and copper sulfide ore. While there is an agreement that mineralization at Mantoverde was caused by hydrothermal fluid(s), there is a lack of consensus for the role(s) that non-magmatic vs. magmatic fluid(s) played during the evolution of the mineralized system. In order to overcome the hydrothermal overprint at Mantoverde, which is known to disturb most conventional stable isotope systems (e.g., oxygen), we report the first δ
56
Fe and δ
18
O pairs for early-stage magnetite and late-stage hematite that provide information on the source reservoir of the hydrothermal fluids. Magnetite δ
56
Fe values range from 0.46 ± 0.04 to 0.58 ± 0.02‰ and average 0.51 ± 0.16‰ (
n
= 10; 2
σ
). Three hematite δ
56
Fe values were measured to be 0.34 ± 0.10, 0.42 ± 0.09, and 0.46 ± 0.06. Magnetite δ
18
O values range from 0.69 ± 0.04 to 4.61 ± 0.05‰ and average 2.99 ± 2.70‰ (
n
= 9; 2
σ
). Hematite δ
18
O values range from − 1.36 ± 0.05 to 5.57 ± 0.05‰ and average 0.10 ± 5.38‰ (
n
= 6; 2
σ
). These new δ
56
Fe and δ
18
O values fingerprint a magmatic-hydrothermal fluid as the predominant ore-forming fluid responsible for mineralization in the Mantoverde system.</description><subject>Apatite</subject><subject>Copper</subject><subject>Copper ores</subject><subject>Copper sulfides</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluids</subject><subject>Geology</subject><subject>Gold</subject><subject>Haematite</subject><subject>Hematite</subject><subject>Iron oxides</subject><subject>Isotopes</subject><subject>Magnetite</subject><subject>Mineral Resources</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Stable isotopes</subject><subject>Sulfides</subject><subject>Sulphides</subject><issn>0026-4598</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UU1PwjAYbowmIvoHPDXxoonVfmxj82YWQRIMFz03ZX0HJWOdbVH8Rf5NCxj15KnN89nmQeic0RtG6eDWU8p4RigrCKWFyMjmAPVYIjhheZYdoh6lkU7SIj9GJ94vaVSxhPbQ59C6lQrGttjWOCwAP6k22DdwGrBxW3hjNJDKdh04MreNxpfjaTm6who66024xuXCNHCHTevNfBE8rp1d4SFg1Wo8xT6oWROzvA22A79DK7vqlItQ6_G7CYu_TaqLzwmwbbn_KfGn6KhWjYez77OPXoYPz-UjmUxH4_J-QpRIeCCgOQctKlCg6yLJ0xzixzOac66LVNBU5DNNq1zDQKWRrSKlinid6aQagBB9dLHP7Zx9XYMPcmnXro2VkidikCVpLlhU8b2qctZ7B7XsnFkp9yEZldtB5H4QGQeRu0HkJprE3uSjuJ2D-43-x_UFlguQPg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Childress, Tristan M.</creator><creator>Simon, Adam C.</creator><creator>Reich, Martin</creator><creator>Barra, Fernando</creator><creator>Arce, Mauricio</creator><creator>Lundstrom, Craig C.</creator><creator>Bindeman, Ilya N.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2827-9379</orcidid></search><sort><creationdate>20201001</creationdate><title>Formation of the Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile: insights from Fe and O stable isotopes and comparisons with iron oxide-apatite (IOA) deposits</title><author>Childress, Tristan M. ; Simon, Adam C. ; Reich, Martin ; Barra, Fernando ; Arce, Mauricio ; Lundstrom, Craig C. ; Bindeman, Ilya N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-ed22ed3ceaedf94858e02660822d9530538bd0c8de7a5858c608a9a58bd4c7e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apatite</topic><topic>Copper</topic><topic>Copper ores</topic><topic>Copper sulfides</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluids</topic><topic>Geology</topic><topic>Gold</topic><topic>Haematite</topic><topic>Hematite</topic><topic>Iron oxides</topic><topic>Isotopes</topic><topic>Magnetite</topic><topic>Mineral Resources</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Stable isotopes</topic><topic>Sulfides</topic><topic>Sulphides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Childress, Tristan M.</creatorcontrib><creatorcontrib>Simon, Adam C.</creatorcontrib><creatorcontrib>Reich, Martin</creatorcontrib><creatorcontrib>Barra, Fernando</creatorcontrib><creatorcontrib>Arce, Mauricio</creatorcontrib><creatorcontrib>Lundstrom, Craig C.</creatorcontrib><creatorcontrib>Bindeman, Ilya N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Childress, Tristan M.</au><au>Simon, Adam C.</au><au>Reich, Martin</au><au>Barra, Fernando</au><au>Arce, Mauricio</au><au>Lundstrom, Craig C.</au><au>Bindeman, Ilya N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of the Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile: insights from Fe and O stable isotopes and comparisons with iron oxide-apatite (IOA) deposits</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>55</volume><issue>7</issue><spage>1489</spage><epage>1504</epage><pages>1489-1504</pages><issn>0026-4598</issn><eissn>1432-1866</eissn><abstract>The Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile, contains hundreds of millions of tonnes (Mt) of mineable iron oxide and copper sulfide ore. While there is an agreement that mineralization at Mantoverde was caused by hydrothermal fluid(s), there is a lack of consensus for the role(s) that non-magmatic vs. magmatic fluid(s) played during the evolution of the mineralized system. In order to overcome the hydrothermal overprint at Mantoverde, which is known to disturb most conventional stable isotope systems (e.g., oxygen), we report the first δ
56
Fe and δ
18
O pairs for early-stage magnetite and late-stage hematite that provide information on the source reservoir of the hydrothermal fluids. Magnetite δ
56
Fe values range from 0.46 ± 0.04 to 0.58 ± 0.02‰ and average 0.51 ± 0.16‰ (
n
= 10; 2
σ
). Three hematite δ
56
Fe values were measured to be 0.34 ± 0.10, 0.42 ± 0.09, and 0.46 ± 0.06. Magnetite δ
18
O values range from 0.69 ± 0.04 to 4.61 ± 0.05‰ and average 2.99 ± 2.70‰ (
n
= 9; 2
σ
). Hematite δ
18
O values range from − 1.36 ± 0.05 to 5.57 ± 0.05‰ and average 0.10 ± 5.38‰ (
n
= 6; 2
σ
). These new δ
56
Fe and δ
18
O values fingerprint a magmatic-hydrothermal fluid as the predominant ore-forming fluid responsible for mineralization in the Mantoverde system.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-019-00936-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2827-9379</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-4598 |
ispartof | Mineralium deposita, 2020-10, Vol.55 (7), p.1489-1504 |
issn | 0026-4598 1432-1866 |
language | eng |
recordid | cdi_proquest_journals_2437645831 |
source | Springer Link |
subjects | Apatite Copper Copper ores Copper sulfides Earth and Environmental Science Earth Sciences Fluids Geology Gold Haematite Hematite Iron oxides Isotopes Magnetite Mineral Resources Mineralization Mineralogy Stable isotopes Sulfides Sulphides |
title | Formation of the Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile: insights from Fe and O stable isotopes and comparisons with iron oxide-apatite (IOA) deposits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20the%20Mantoverde%20iron%20oxide-copper-gold%20(IOCG)%20deposit,%20Chile:%20insights%20from%20Fe%20and%20O%20stable%20isotopes%20and%20comparisons%20with%20iron%20oxide-apatite%20(IOA)%20deposits&rft.jtitle=Mineralium%20deposita&rft.au=Childress,%20Tristan%20M.&rft.date=2020-10-01&rft.volume=55&rft.issue=7&rft.spage=1489&rft.epage=1504&rft.pages=1489-1504&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-019-00936-x&rft_dat=%3Cproquest_cross%3E2437645831%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a342t-ed22ed3ceaedf94858e02660822d9530538bd0c8de7a5858c608a9a58bd4c7e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2437645831&rft_id=info:pmid/&rfr_iscdi=true |