Loading…

Formation of the Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile: insights from Fe and O stable isotopes and comparisons with iron oxide-apatite (IOA) deposits

The Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile, contains hundreds of millions of tonnes (Mt) of mineable iron oxide and copper sulfide ore. While there is an agreement that mineralization at Mantoverde was caused by hydrothermal fluid(s), there is a lack of consensus for the role(s) tha...

Full description

Saved in:
Bibliographic Details
Published in:Mineralium deposita 2020-10, Vol.55 (7), p.1489-1504
Main Authors: Childress, Tristan M., Simon, Adam C., Reich, Martin, Barra, Fernando, Arce, Mauricio, Lundstrom, Craig C., Bindeman, Ilya N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a342t-ed22ed3ceaedf94858e02660822d9530538bd0c8de7a5858c608a9a58bd4c7e33
cites cdi_FETCH-LOGICAL-a342t-ed22ed3ceaedf94858e02660822d9530538bd0c8de7a5858c608a9a58bd4c7e33
container_end_page 1504
container_issue 7
container_start_page 1489
container_title Mineralium deposita
container_volume 55
creator Childress, Tristan M.
Simon, Adam C.
Reich, Martin
Barra, Fernando
Arce, Mauricio
Lundstrom, Craig C.
Bindeman, Ilya N.
description The Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile, contains hundreds of millions of tonnes (Mt) of mineable iron oxide and copper sulfide ore. While there is an agreement that mineralization at Mantoverde was caused by hydrothermal fluid(s), there is a lack of consensus for the role(s) that non-magmatic vs. magmatic fluid(s) played during the evolution of the mineralized system. In order to overcome the hydrothermal overprint at Mantoverde, which is known to disturb most conventional stable isotope systems (e.g., oxygen), we report the first δ 56 Fe and δ 18 O pairs for early-stage magnetite and late-stage hematite that provide information on the source reservoir of the hydrothermal fluids. Magnetite δ 56 Fe values range from 0.46 ± 0.04 to 0.58 ± 0.02‰ and average 0.51 ± 0.16‰ ( n = 10; 2 σ ). Three hematite δ 56 Fe values were measured to be 0.34 ± 0.10, 0.42 ± 0.09, and 0.46 ± 0.06. Magnetite δ 18 O values range from 0.69 ± 0.04 to 4.61 ± 0.05‰ and average 2.99 ± 2.70‰ ( n = 9; 2 σ ). Hematite δ 18 O values range from − 1.36 ± 0.05 to 5.57 ± 0.05‰ and average 0.10 ± 5.38‰ ( n = 6; 2 σ ). These new δ 56 Fe and δ 18 O values fingerprint a magmatic-hydrothermal fluid as the predominant ore-forming fluid responsible for mineralization in the Mantoverde system.
doi_str_mv 10.1007/s00126-019-00936-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2437645831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437645831</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-ed22ed3ceaedf94858e02660822d9530538bd0c8de7a5858c608a9a58bd4c7e33</originalsourceid><addsrcrecordid>eNp9UU1PwjAYbowmIvoHPDXxoonVfmxj82YWQRIMFz03ZX0HJWOdbVH8Rf5NCxj15KnN89nmQeic0RtG6eDWU8p4RigrCKWFyMjmAPVYIjhheZYdoh6lkU7SIj9GJ94vaVSxhPbQ59C6lQrGttjWOCwAP6k22DdwGrBxW3hjNJDKdh04MreNxpfjaTm6who66024xuXCNHCHTevNfBE8rp1d4SFg1Wo8xT6oWROzvA22A79DK7vqlItQ6_G7CYu_TaqLzwmwbbn_KfGn6KhWjYez77OPXoYPz-UjmUxH4_J-QpRIeCCgOQctKlCg6yLJ0xzixzOac66LVNBU5DNNq1zDQKWRrSKlinid6aQagBB9dLHP7Zx9XYMPcmnXro2VkidikCVpLlhU8b2qctZ7B7XsnFkp9yEZldtB5H4QGQeRu0HkJprE3uSjuJ2D-43-x_UFlguQPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437645831</pqid></control><display><type>article</type><title>Formation of the Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile: insights from Fe and O stable isotopes and comparisons with iron oxide-apatite (IOA) deposits</title><source>Springer Link</source><creator>Childress, Tristan M. ; Simon, Adam C. ; Reich, Martin ; Barra, Fernando ; Arce, Mauricio ; Lundstrom, Craig C. ; Bindeman, Ilya N.</creator><creatorcontrib>Childress, Tristan M. ; Simon, Adam C. ; Reich, Martin ; Barra, Fernando ; Arce, Mauricio ; Lundstrom, Craig C. ; Bindeman, Ilya N.</creatorcontrib><description>The Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile, contains hundreds of millions of tonnes (Mt) of mineable iron oxide and copper sulfide ore. While there is an agreement that mineralization at Mantoverde was caused by hydrothermal fluid(s), there is a lack of consensus for the role(s) that non-magmatic vs. magmatic fluid(s) played during the evolution of the mineralized system. In order to overcome the hydrothermal overprint at Mantoverde, which is known to disturb most conventional stable isotope systems (e.g., oxygen), we report the first δ 56 Fe and δ 18 O pairs for early-stage magnetite and late-stage hematite that provide information on the source reservoir of the hydrothermal fluids. Magnetite δ 56 Fe values range from 0.46 ± 0.04 to 0.58 ± 0.02‰ and average 0.51 ± 0.16‰ ( n = 10; 2 σ ). Three hematite δ 56 Fe values were measured to be 0.34 ± 0.10, 0.42 ± 0.09, and 0.46 ± 0.06. Magnetite δ 18 O values range from 0.69 ± 0.04 to 4.61 ± 0.05‰ and average 2.99 ± 2.70‰ ( n = 9; 2 σ ). Hematite δ 18 O values range from − 1.36 ± 0.05 to 5.57 ± 0.05‰ and average 0.10 ± 5.38‰ ( n = 6; 2 σ ). These new δ 56 Fe and δ 18 O values fingerprint a magmatic-hydrothermal fluid as the predominant ore-forming fluid responsible for mineralization in the Mantoverde system.</description><identifier>ISSN: 0026-4598</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-019-00936-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Apatite ; Copper ; Copper ores ; Copper sulfides ; Earth and Environmental Science ; Earth Sciences ; Fluids ; Geology ; Gold ; Haematite ; Hematite ; Iron oxides ; Isotopes ; Magnetite ; Mineral Resources ; Mineralization ; Mineralogy ; Stable isotopes ; Sulfides ; Sulphides</subject><ispartof>Mineralium deposita, 2020-10, Vol.55 (7), p.1489-1504</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-ed22ed3ceaedf94858e02660822d9530538bd0c8de7a5858c608a9a58bd4c7e33</citedby><cites>FETCH-LOGICAL-a342t-ed22ed3ceaedf94858e02660822d9530538bd0c8de7a5858c608a9a58bd4c7e33</cites><orcidid>0000-0002-2827-9379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Childress, Tristan M.</creatorcontrib><creatorcontrib>Simon, Adam C.</creatorcontrib><creatorcontrib>Reich, Martin</creatorcontrib><creatorcontrib>Barra, Fernando</creatorcontrib><creatorcontrib>Arce, Mauricio</creatorcontrib><creatorcontrib>Lundstrom, Craig C.</creatorcontrib><creatorcontrib>Bindeman, Ilya N.</creatorcontrib><title>Formation of the Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile: insights from Fe and O stable isotopes and comparisons with iron oxide-apatite (IOA) deposits</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>The Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile, contains hundreds of millions of tonnes (Mt) of mineable iron oxide and copper sulfide ore. While there is an agreement that mineralization at Mantoverde was caused by hydrothermal fluid(s), there is a lack of consensus for the role(s) that non-magmatic vs. magmatic fluid(s) played during the evolution of the mineralized system. In order to overcome the hydrothermal overprint at Mantoverde, which is known to disturb most conventional stable isotope systems (e.g., oxygen), we report the first δ 56 Fe and δ 18 O pairs for early-stage magnetite and late-stage hematite that provide information on the source reservoir of the hydrothermal fluids. Magnetite δ 56 Fe values range from 0.46 ± 0.04 to 0.58 ± 0.02‰ and average 0.51 ± 0.16‰ ( n = 10; 2 σ ). Three hematite δ 56 Fe values were measured to be 0.34 ± 0.10, 0.42 ± 0.09, and 0.46 ± 0.06. Magnetite δ 18 O values range from 0.69 ± 0.04 to 4.61 ± 0.05‰ and average 2.99 ± 2.70‰ ( n = 9; 2 σ ). Hematite δ 18 O values range from − 1.36 ± 0.05 to 5.57 ± 0.05‰ and average 0.10 ± 5.38‰ ( n = 6; 2 σ ). These new δ 56 Fe and δ 18 O values fingerprint a magmatic-hydrothermal fluid as the predominant ore-forming fluid responsible for mineralization in the Mantoverde system.</description><subject>Apatite</subject><subject>Copper</subject><subject>Copper ores</subject><subject>Copper sulfides</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluids</subject><subject>Geology</subject><subject>Gold</subject><subject>Haematite</subject><subject>Hematite</subject><subject>Iron oxides</subject><subject>Isotopes</subject><subject>Magnetite</subject><subject>Mineral Resources</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Stable isotopes</subject><subject>Sulfides</subject><subject>Sulphides</subject><issn>0026-4598</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UU1PwjAYbowmIvoHPDXxoonVfmxj82YWQRIMFz03ZX0HJWOdbVH8Rf5NCxj15KnN89nmQeic0RtG6eDWU8p4RigrCKWFyMjmAPVYIjhheZYdoh6lkU7SIj9GJ94vaVSxhPbQ59C6lQrGttjWOCwAP6k22DdwGrBxW3hjNJDKdh04MreNxpfjaTm6who66024xuXCNHCHTevNfBE8rp1d4SFg1Wo8xT6oWROzvA22A79DK7vqlItQ6_G7CYu_TaqLzwmwbbn_KfGn6KhWjYez77OPXoYPz-UjmUxH4_J-QpRIeCCgOQctKlCg6yLJ0xzixzOac66LVNBU5DNNq1zDQKWRrSKlinid6aQagBB9dLHP7Zx9XYMPcmnXro2VkidikCVpLlhU8b2qctZ7B7XsnFkp9yEZldtB5H4QGQeRu0HkJprE3uSjuJ2D-43-x_UFlguQPg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Childress, Tristan M.</creator><creator>Simon, Adam C.</creator><creator>Reich, Martin</creator><creator>Barra, Fernando</creator><creator>Arce, Mauricio</creator><creator>Lundstrom, Craig C.</creator><creator>Bindeman, Ilya N.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2827-9379</orcidid></search><sort><creationdate>20201001</creationdate><title>Formation of the Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile: insights from Fe and O stable isotopes and comparisons with iron oxide-apatite (IOA) deposits</title><author>Childress, Tristan M. ; Simon, Adam C. ; Reich, Martin ; Barra, Fernando ; Arce, Mauricio ; Lundstrom, Craig C. ; Bindeman, Ilya N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-ed22ed3ceaedf94858e02660822d9530538bd0c8de7a5858c608a9a58bd4c7e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apatite</topic><topic>Copper</topic><topic>Copper ores</topic><topic>Copper sulfides</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluids</topic><topic>Geology</topic><topic>Gold</topic><topic>Haematite</topic><topic>Hematite</topic><topic>Iron oxides</topic><topic>Isotopes</topic><topic>Magnetite</topic><topic>Mineral Resources</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Stable isotopes</topic><topic>Sulfides</topic><topic>Sulphides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Childress, Tristan M.</creatorcontrib><creatorcontrib>Simon, Adam C.</creatorcontrib><creatorcontrib>Reich, Martin</creatorcontrib><creatorcontrib>Barra, Fernando</creatorcontrib><creatorcontrib>Arce, Mauricio</creatorcontrib><creatorcontrib>Lundstrom, Craig C.</creatorcontrib><creatorcontrib>Bindeman, Ilya N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Childress, Tristan M.</au><au>Simon, Adam C.</au><au>Reich, Martin</au><au>Barra, Fernando</au><au>Arce, Mauricio</au><au>Lundstrom, Craig C.</au><au>Bindeman, Ilya N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of the Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile: insights from Fe and O stable isotopes and comparisons with iron oxide-apatite (IOA) deposits</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>55</volume><issue>7</issue><spage>1489</spage><epage>1504</epage><pages>1489-1504</pages><issn>0026-4598</issn><eissn>1432-1866</eissn><abstract>The Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile, contains hundreds of millions of tonnes (Mt) of mineable iron oxide and copper sulfide ore. While there is an agreement that mineralization at Mantoverde was caused by hydrothermal fluid(s), there is a lack of consensus for the role(s) that non-magmatic vs. magmatic fluid(s) played during the evolution of the mineralized system. In order to overcome the hydrothermal overprint at Mantoverde, which is known to disturb most conventional stable isotope systems (e.g., oxygen), we report the first δ 56 Fe and δ 18 O pairs for early-stage magnetite and late-stage hematite that provide information on the source reservoir of the hydrothermal fluids. Magnetite δ 56 Fe values range from 0.46 ± 0.04 to 0.58 ± 0.02‰ and average 0.51 ± 0.16‰ ( n = 10; 2 σ ). Three hematite δ 56 Fe values were measured to be 0.34 ± 0.10, 0.42 ± 0.09, and 0.46 ± 0.06. Magnetite δ 18 O values range from 0.69 ± 0.04 to 4.61 ± 0.05‰ and average 2.99 ± 2.70‰ ( n = 9; 2 σ ). Hematite δ 18 O values range from − 1.36 ± 0.05 to 5.57 ± 0.05‰ and average 0.10 ± 5.38‰ ( n = 6; 2 σ ). These new δ 56 Fe and δ 18 O values fingerprint a magmatic-hydrothermal fluid as the predominant ore-forming fluid responsible for mineralization in the Mantoverde system.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-019-00936-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2827-9379</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0026-4598
ispartof Mineralium deposita, 2020-10, Vol.55 (7), p.1489-1504
issn 0026-4598
1432-1866
language eng
recordid cdi_proquest_journals_2437645831
source Springer Link
subjects Apatite
Copper
Copper ores
Copper sulfides
Earth and Environmental Science
Earth Sciences
Fluids
Geology
Gold
Haematite
Hematite
Iron oxides
Isotopes
Magnetite
Mineral Resources
Mineralization
Mineralogy
Stable isotopes
Sulfides
Sulphides
title Formation of the Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile: insights from Fe and O stable isotopes and comparisons with iron oxide-apatite (IOA) deposits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20the%20Mantoverde%20iron%20oxide-copper-gold%20(IOCG)%20deposit,%20Chile:%20insights%20from%20Fe%20and%20O%20stable%20isotopes%20and%20comparisons%20with%20iron%20oxide-apatite%20(IOA)%20deposits&rft.jtitle=Mineralium%20deposita&rft.au=Childress,%20Tristan%20M.&rft.date=2020-10-01&rft.volume=55&rft.issue=7&rft.spage=1489&rft.epage=1504&rft.pages=1489-1504&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-019-00936-x&rft_dat=%3Cproquest_cross%3E2437645831%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a342t-ed22ed3ceaedf94858e02660822d9530538bd0c8de7a5858c608a9a58bd4c7e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2437645831&rft_id=info:pmid/&rfr_iscdi=true