Loading…

Optical Aharonov—Bohm Effect

A variant of the experiment to observe the optical Aharonov—Bohm effect has been discussed. In the experiment, a unipolar subcycle light pulse has been proposed as a source of the vector potential acting on electrons and having zero electric field strength in the region of a nonzero vector potential...

Full description

Saved in:
Bibliographic Details
Published in:JETP letters 2020-06, Vol.111 (12), p.668-671
Main Authors: Arkhipov, M. V., Arkhipov, R. M., Rosanov, N. N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A variant of the experiment to observe the optical Aharonov—Bohm effect has been discussed. In the experiment, a unipolar subcycle light pulse has been proposed as a source of the vector potential acting on electrons and having zero electric field strength in the region of a nonzero vector potential. Such a relation between the field and potential appears because the unipolar pulse has a nonzero electric area. An unusual situation where the fact of the passage of the pulse in one of the arms of two-beam interferometer is stored for a very long time after the passage and can be recorded in a two-beam electronic interferometer by a shift of fringes has been discussed. Detailed analysis of the phase shift under the influence of the vector potential created by the inhomogeneous unipolar pulse removes this contradiction and shows the equality of phase incursions in both arms that is unobvious at first glance.
ISSN:0021-3640
1090-6487
DOI:10.1134/S002136402012005X