Loading…
Strong instability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersions
In this paper, we consider the strong instability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersions iψt−γΔ2ψ+μΔψ+|ψ|pψ=0,(t,x)∈[0,T∗)×RN,where γ>0 and μ0.
Saved in:
Published in: | Nonlinear analysis 2020-07, Vol.196, p.111791, Article 111791 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c322t-253556eadd007780ed9a1ff5bae0b14fcb6796f6b99fc7fd37b6b3b3df0974b53 |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-253556eadd007780ed9a1ff5bae0b14fcb6796f6b99fc7fd37b6b3b3df0974b53 |
container_end_page | |
container_issue | |
container_start_page | 111791 |
container_title | Nonlinear analysis |
container_volume | 196 |
creator | Feng, Binhua Liu, Jiayin Niu, Huiling Zhang, Binlin |
description | In this paper, we consider the strong instability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersions iψt−γΔ2ψ+μΔψ+|ψ|pψ=0,(t,x)∈[0,T∗)×RN,where γ>0 and μ0. |
doi_str_mv | 10.1016/j.na.2020.111791 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2437905413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X20300493</els_id><sourcerecordid>2437905413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-253556eadd007780ed9a1ff5bae0b14fcb6796f6b99fc7fd37b6b3b3df0974b53</originalsourceid><addsrcrecordid>eNp1UMtOQyEQJUYTa3XvksT1rXC5gNedaXwlTVyoiTsCl8HSVGiB-vgxf8Afk6Zu3cxkzpwzj4PQKSUTSqg4X0yCnrSkrSWlsqd7aEQvJGt4S_k-GhEm2oZ34uUQHeW8IIRQycQIpceSYnjFPuSijV_68oWjw7UI1lf8Q79Dxi4mrGvcpDJvYrKQcIhh6QPohB-Hefr53rIrDOuNLj4G_OHLHJc54Df_CRZbn1eQcu3kY3Tg9DLDyV8eo-eb66fpXTN7uL2fXs2agbVtaVrOOBegrSVEygsCttfUOW40EEM7Nxghe-GE6Xs3SGeZNMIww6wjvewMZ2N0tpu7SnG9gVzUoj4Q6krVdkz2hHeUVRbZsYYUc07g1Cr5N52-FCVq66xaqKDV1lm1c7ZKLncSqNe_e0gqDx7CANYnGIqy0f8v_gVJWoOB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437905413</pqid></control><display><type>article</type><title>Strong instability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersions</title><source>Elsevier SD Backfile Mathematics</source><source>Elsevier</source><creator>Feng, Binhua ; Liu, Jiayin ; Niu, Huiling ; Zhang, Binlin</creator><creatorcontrib>Feng, Binhua ; Liu, Jiayin ; Niu, Huiling ; Zhang, Binlin</creatorcontrib><description>In this paper, we consider the strong instability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersions iψt−γΔ2ψ+μΔψ+|ψ|pψ=0,(t,x)∈[0,T∗)×RN,where γ>0 and μ<0. This equation arises in describing the propagation of intense laser beams in a bulk medium with Kerr nonlinearity. We firstly obtain the variational characterization of ground state solutions by using the profile decomposition theory in H2. Then, we deduce that if ∂λ2Sω(uλ)|λ=1≤0, the ground state standing wave eiωtu is strongly unstable by blow-up, where uλ(x)=λN2u(λx) and Sω is the action. This result is a complement to the result of Bonheure et al. (2019), where the strong instability of standing waves has been studied in the case μ>0.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2020.111791</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Bi-harmonic nonlinear Schrödinger equation ; Dispersions ; Ground state ; Laser beams ; Nonlinearity ; Schrodinger equation ; Stability ; Standing waves ; Strong instability</subject><ispartof>Nonlinear analysis, 2020-07, Vol.196, p.111791, Article 111791</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-253556eadd007780ed9a1ff5bae0b14fcb6796f6b99fc7fd37b6b3b3df0974b53</citedby><cites>FETCH-LOGICAL-c322t-253556eadd007780ed9a1ff5bae0b14fcb6796f6b99fc7fd37b6b3b3df0974b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X20300493$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3564,27924,27925,46003</link.rule.ids></links><search><creatorcontrib>Feng, Binhua</creatorcontrib><creatorcontrib>Liu, Jiayin</creatorcontrib><creatorcontrib>Niu, Huiling</creatorcontrib><creatorcontrib>Zhang, Binlin</creatorcontrib><title>Strong instability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersions</title><title>Nonlinear analysis</title><description>In this paper, we consider the strong instability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersions iψt−γΔ2ψ+μΔψ+|ψ|pψ=0,(t,x)∈[0,T∗)×RN,where γ>0 and μ<0. This equation arises in describing the propagation of intense laser beams in a bulk medium with Kerr nonlinearity. We firstly obtain the variational characterization of ground state solutions by using the profile decomposition theory in H2. Then, we deduce that if ∂λ2Sω(uλ)|λ=1≤0, the ground state standing wave eiωtu is strongly unstable by blow-up, where uλ(x)=λN2u(λx) and Sω is the action. This result is a complement to the result of Bonheure et al. (2019), where the strong instability of standing waves has been studied in the case μ>0.</description><subject>Bi-harmonic nonlinear Schrödinger equation</subject><subject>Dispersions</subject><subject>Ground state</subject><subject>Laser beams</subject><subject>Nonlinearity</subject><subject>Schrodinger equation</subject><subject>Stability</subject><subject>Standing waves</subject><subject>Strong instability</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOQyEQJUYTa3XvksT1rXC5gNedaXwlTVyoiTsCl8HSVGiB-vgxf8Afk6Zu3cxkzpwzj4PQKSUTSqg4X0yCnrSkrSWlsqd7aEQvJGt4S_k-GhEm2oZ34uUQHeW8IIRQycQIpceSYnjFPuSijV_68oWjw7UI1lf8Q79Dxi4mrGvcpDJvYrKQcIhh6QPohB-Hefr53rIrDOuNLj4G_OHLHJc54Df_CRZbn1eQcu3kY3Tg9DLDyV8eo-eb66fpXTN7uL2fXs2agbVtaVrOOBegrSVEygsCttfUOW40EEM7Nxghe-GE6Xs3SGeZNMIww6wjvewMZ2N0tpu7SnG9gVzUoj4Q6krVdkz2hHeUVRbZsYYUc07g1Cr5N52-FCVq66xaqKDV1lm1c7ZKLncSqNe_e0gqDx7CANYnGIqy0f8v_gVJWoOB</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Feng, Binhua</creator><creator>Liu, Jiayin</creator><creator>Niu, Huiling</creator><creator>Zhang, Binlin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202007</creationdate><title>Strong instability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersions</title><author>Feng, Binhua ; Liu, Jiayin ; Niu, Huiling ; Zhang, Binlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-253556eadd007780ed9a1ff5bae0b14fcb6796f6b99fc7fd37b6b3b3df0974b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bi-harmonic nonlinear Schrödinger equation</topic><topic>Dispersions</topic><topic>Ground state</topic><topic>Laser beams</topic><topic>Nonlinearity</topic><topic>Schrodinger equation</topic><topic>Stability</topic><topic>Standing waves</topic><topic>Strong instability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Binhua</creatorcontrib><creatorcontrib>Liu, Jiayin</creatorcontrib><creatorcontrib>Niu, Huiling</creatorcontrib><creatorcontrib>Zhang, Binlin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Binhua</au><au>Liu, Jiayin</au><au>Niu, Huiling</au><au>Zhang, Binlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong instability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersions</atitle><jtitle>Nonlinear analysis</jtitle><date>2020-07</date><risdate>2020</risdate><volume>196</volume><spage>111791</spage><pages>111791-</pages><artnum>111791</artnum><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>In this paper, we consider the strong instability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersions iψt−γΔ2ψ+μΔψ+|ψ|pψ=0,(t,x)∈[0,T∗)×RN,where γ>0 and μ<0. This equation arises in describing the propagation of intense laser beams in a bulk medium with Kerr nonlinearity. We firstly obtain the variational characterization of ground state solutions by using the profile decomposition theory in H2. Then, we deduce that if ∂λ2Sω(uλ)|λ=1≤0, the ground state standing wave eiωtu is strongly unstable by blow-up, where uλ(x)=λN2u(λx) and Sω is the action. This result is a complement to the result of Bonheure et al. (2019), where the strong instability of standing waves has been studied in the case μ>0.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2020.111791</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2020-07, Vol.196, p.111791, Article 111791 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_journals_2437905413 |
source | Elsevier SD Backfile Mathematics; Elsevier |
subjects | Bi-harmonic nonlinear Schrödinger equation Dispersions Ground state Laser beams Nonlinearity Schrodinger equation Stability Standing waves Strong instability |
title | Strong instability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A54%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20instability%20of%20standing%20waves%20for%20a%20fourth-order%20nonlinear%20Schr%C3%B6dinger%20equation%20with%20the%20mixed%20dispersions&rft.jtitle=Nonlinear%20analysis&rft.au=Feng,%20Binhua&rft.date=2020-07&rft.volume=196&rft.spage=111791&rft.pages=111791-&rft.artnum=111791&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2020.111791&rft_dat=%3Cproquest_cross%3E2437905413%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-253556eadd007780ed9a1ff5bae0b14fcb6796f6b99fc7fd37b6b3b3df0974b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2437905413&rft_id=info:pmid/&rfr_iscdi=true |