Loading…
On the long tail property of product convolution
Let X and Y be two independent random variables with corresponding distributions F and G on [0 ,∞ ). The distribution of the product XY , which is called the product convolution of F and G , is denoted by H . In this paper, we give some suitable conditions on F and G , under which the distribution H...
Saved in:
Published in: | Lithuanian mathematical journal 2020-07, Vol.60 (3), p.315-329 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-ee32bd44f6b578e76c8567deb5a548a3c0518fc2524b95bb02390fb4068fb5d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-ee32bd44f6b578e76c8567deb5a548a3c0518fc2524b95bb02390fb4068fb5d3 |
container_end_page | 329 |
container_issue | 3 |
container_start_page | 315 |
container_title | Lithuanian mathematical journal |
container_volume | 60 |
creator | Cui, Zhaolei Wang, Yuebao |
description | Let
X
and
Y
be two independent random variables with corresponding distributions
F
and
G
on [0
,∞
). The distribution of the product
XY
, which is called the product convolution of
F
and
G
, is denoted by
H
. In this paper, we give some suitable conditions on
F
and
G
, under which the distribution
H
belongs to the long-tailed distribution class. Here
F
is a generalized long-tailed distribution, not necessarily an exponential distribution. Finally, we give a series ofexamples to show that our conditions are satisfied by many distributions, and one of them is necessary in some sense. |
doi_str_mv | 10.1007/s10986-020-09482-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438395526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438395526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ee32bd44f6b578e76c8567deb5a548a3c0518fc2524b95bb02390fb4068fb5d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-jkc7NHKX5BoZfewyab1JZ1U5Ospf_e1BW8eZo5PO87w4PQLYF7AlA_JAKNkhgoYGi4ovhwhmZE1AwrRcU5mgGTDBNZ00t0ldIOoPAEZghWQ5XfXdWHYVPldttX-xj2LuZjFfxp70abKxuGr9CPeRuGa3Th2z65m985R-vnp_XiFS9XL2-LxyW2jDQZO8eo6Tj30ohauVpaJWTdOSNawVXLLAiivKWCctMIY4CyBrzhIJU3omNzdDfVlhc-R5ey3oUxDuWippwp1ghBZaHoRNkYUorO633cfrTxqAnokxg9idFFjP4Row8lxKZQKvCwcfGv-p_UNy5rZd0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438395526</pqid></control><display><type>article</type><title>On the long tail property of product convolution</title><source>Springer Nature</source><creator>Cui, Zhaolei ; Wang, Yuebao</creator><creatorcontrib>Cui, Zhaolei ; Wang, Yuebao</creatorcontrib><description>Let
X
and
Y
be two independent random variables with corresponding distributions
F
and
G
on [0
,∞
). The distribution of the product
XY
, which is called the product convolution of
F
and
G
, is denoted by
H
. In this paper, we give some suitable conditions on
F
and
G
, under which the distribution
H
belongs to the long-tailed distribution class. Here
F
is a generalized long-tailed distribution, not necessarily an exponential distribution. Finally, we give a series ofexamples to show that our conditions are satisfied by many distributions, and one of them is necessary in some sense.</description><identifier>ISSN: 0363-1672</identifier><identifier>EISSN: 1573-8825</identifier><identifier>DOI: 10.1007/s10986-020-09482-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Actuarial Sciences ; Convolution ; Independent variables ; Mathematics ; Mathematics and Statistics ; Number Theory ; Ordinary Differential Equations ; Probability distribution functions ; Probability Theory and Stochastic Processes ; Random variables</subject><ispartof>Lithuanian mathematical journal, 2020-07, Vol.60 (3), p.315-329</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ee32bd44f6b578e76c8567deb5a548a3c0518fc2524b95bb02390fb4068fb5d3</citedby><cites>FETCH-LOGICAL-c319t-ee32bd44f6b578e76c8567deb5a548a3c0518fc2524b95bb02390fb4068fb5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cui, Zhaolei</creatorcontrib><creatorcontrib>Wang, Yuebao</creatorcontrib><title>On the long tail property of product convolution</title><title>Lithuanian mathematical journal</title><addtitle>Lith Math J</addtitle><description>Let
X
and
Y
be two independent random variables with corresponding distributions
F
and
G
on [0
,∞
). The distribution of the product
XY
, which is called the product convolution of
F
and
G
, is denoted by
H
. In this paper, we give some suitable conditions on
F
and
G
, under which the distribution
H
belongs to the long-tailed distribution class. Here
F
is a generalized long-tailed distribution, not necessarily an exponential distribution. Finally, we give a series ofexamples to show that our conditions are satisfied by many distributions, and one of them is necessary in some sense.</description><subject>Actuarial Sciences</subject><subject>Convolution</subject><subject>Independent variables</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Ordinary Differential Equations</subject><subject>Probability distribution functions</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Random variables</subject><issn>0363-1672</issn><issn>1573-8825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-jkc7NHKX5BoZfewyab1JZ1U5Ospf_e1BW8eZo5PO87w4PQLYF7AlA_JAKNkhgoYGi4ovhwhmZE1AwrRcU5mgGTDBNZ00t0ldIOoPAEZghWQ5XfXdWHYVPldttX-xj2LuZjFfxp70abKxuGr9CPeRuGa3Th2z65m985R-vnp_XiFS9XL2-LxyW2jDQZO8eo6Tj30ohauVpaJWTdOSNawVXLLAiivKWCctMIY4CyBrzhIJU3omNzdDfVlhc-R5ey3oUxDuWippwp1ghBZaHoRNkYUorO633cfrTxqAnokxg9idFFjP4Row8lxKZQKvCwcfGv-p_UNy5rZd0</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Cui, Zhaolei</creator><creator>Wang, Yuebao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200701</creationdate><title>On the long tail property of product convolution</title><author>Cui, Zhaolei ; Wang, Yuebao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ee32bd44f6b578e76c8567deb5a548a3c0518fc2524b95bb02390fb4068fb5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuarial Sciences</topic><topic>Convolution</topic><topic>Independent variables</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Ordinary Differential Equations</topic><topic>Probability distribution functions</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Zhaolei</creatorcontrib><creatorcontrib>Wang, Yuebao</creatorcontrib><collection>CrossRef</collection><jtitle>Lithuanian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Zhaolei</au><au>Wang, Yuebao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the long tail property of product convolution</atitle><jtitle>Lithuanian mathematical journal</jtitle><stitle>Lith Math J</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>60</volume><issue>3</issue><spage>315</spage><epage>329</epage><pages>315-329</pages><issn>0363-1672</issn><eissn>1573-8825</eissn><abstract>Let
X
and
Y
be two independent random variables with corresponding distributions
F
and
G
on [0
,∞
). The distribution of the product
XY
, which is called the product convolution of
F
and
G
, is denoted by
H
. In this paper, we give some suitable conditions on
F
and
G
, under which the distribution
H
belongs to the long-tailed distribution class. Here
F
is a generalized long-tailed distribution, not necessarily an exponential distribution. Finally, we give a series ofexamples to show that our conditions are satisfied by many distributions, and one of them is necessary in some sense.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10986-020-09482-w</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-1672 |
ispartof | Lithuanian mathematical journal, 2020-07, Vol.60 (3), p.315-329 |
issn | 0363-1672 1573-8825 |
language | eng |
recordid | cdi_proquest_journals_2438395526 |
source | Springer Nature |
subjects | Actuarial Sciences Convolution Independent variables Mathematics Mathematics and Statistics Number Theory Ordinary Differential Equations Probability distribution functions Probability Theory and Stochastic Processes Random variables |
title | On the long tail property of product convolution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20long%20tail%20property%20of%20product%20convolution&rft.jtitle=Lithuanian%20mathematical%20journal&rft.au=Cui,%20Zhaolei&rft.date=2020-07-01&rft.volume=60&rft.issue=3&rft.spage=315&rft.epage=329&rft.pages=315-329&rft.issn=0363-1672&rft.eissn=1573-8825&rft_id=info:doi/10.1007/s10986-020-09482-w&rft_dat=%3Cproquest_cross%3E2438395526%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-ee32bd44f6b578e76c8567deb5a548a3c0518fc2524b95bb02390fb4068fb5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2438395526&rft_id=info:pmid/&rfr_iscdi=true |