Loading…

On the long tail property of product convolution

Let X and Y be two independent random variables with corresponding distributions F and G on [0 ,∞ ). The distribution of the product XY , which is called the product convolution of F and G , is denoted by H . In this paper, we give some suitable conditions on F and G , under which the distribution H...

Full description

Saved in:
Bibliographic Details
Published in:Lithuanian mathematical journal 2020-07, Vol.60 (3), p.315-329
Main Authors: Cui, Zhaolei, Wang, Yuebao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-ee32bd44f6b578e76c8567deb5a548a3c0518fc2524b95bb02390fb4068fb5d3
cites cdi_FETCH-LOGICAL-c319t-ee32bd44f6b578e76c8567deb5a548a3c0518fc2524b95bb02390fb4068fb5d3
container_end_page 329
container_issue 3
container_start_page 315
container_title Lithuanian mathematical journal
container_volume 60
creator Cui, Zhaolei
Wang, Yuebao
description Let X and Y be two independent random variables with corresponding distributions F and G on [0 ,∞ ). The distribution of the product XY , which is called the product convolution of F and G , is denoted by H . In this paper, we give some suitable conditions on F and G , under which the distribution H belongs to the long-tailed distribution class. Here F is a generalized long-tailed distribution, not necessarily an exponential distribution. Finally, we give a series ofexamples to show that our conditions are satisfied by many distributions, and one of them is necessary in some sense.
doi_str_mv 10.1007/s10986-020-09482-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438395526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438395526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ee32bd44f6b578e76c8567deb5a548a3c0518fc2524b95bb02390fb4068fb5d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-jkc7NHKX5BoZfewyab1JZ1U5Ospf_e1BW8eZo5PO87w4PQLYF7AlA_JAKNkhgoYGi4ovhwhmZE1AwrRcU5mgGTDBNZ00t0ldIOoPAEZghWQ5XfXdWHYVPldttX-xj2LuZjFfxp70abKxuGr9CPeRuGa3Th2z65m985R-vnp_XiFS9XL2-LxyW2jDQZO8eo6Tj30ohauVpaJWTdOSNawVXLLAiivKWCctMIY4CyBrzhIJU3omNzdDfVlhc-R5ey3oUxDuWippwp1ghBZaHoRNkYUorO633cfrTxqAnokxg9idFFjP4Row8lxKZQKvCwcfGv-p_UNy5rZd0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438395526</pqid></control><display><type>article</type><title>On the long tail property of product convolution</title><source>Springer Nature</source><creator>Cui, Zhaolei ; Wang, Yuebao</creator><creatorcontrib>Cui, Zhaolei ; Wang, Yuebao</creatorcontrib><description>Let X and Y be two independent random variables with corresponding distributions F and G on [0 ,∞ ). The distribution of the product XY , which is called the product convolution of F and G , is denoted by H . In this paper, we give some suitable conditions on F and G , under which the distribution H belongs to the long-tailed distribution class. Here F is a generalized long-tailed distribution, not necessarily an exponential distribution. Finally, we give a series ofexamples to show that our conditions are satisfied by many distributions, and one of them is necessary in some sense.</description><identifier>ISSN: 0363-1672</identifier><identifier>EISSN: 1573-8825</identifier><identifier>DOI: 10.1007/s10986-020-09482-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Actuarial Sciences ; Convolution ; Independent variables ; Mathematics ; Mathematics and Statistics ; Number Theory ; Ordinary Differential Equations ; Probability distribution functions ; Probability Theory and Stochastic Processes ; Random variables</subject><ispartof>Lithuanian mathematical journal, 2020-07, Vol.60 (3), p.315-329</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ee32bd44f6b578e76c8567deb5a548a3c0518fc2524b95bb02390fb4068fb5d3</citedby><cites>FETCH-LOGICAL-c319t-ee32bd44f6b578e76c8567deb5a548a3c0518fc2524b95bb02390fb4068fb5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cui, Zhaolei</creatorcontrib><creatorcontrib>Wang, Yuebao</creatorcontrib><title>On the long tail property of product convolution</title><title>Lithuanian mathematical journal</title><addtitle>Lith Math J</addtitle><description>Let X and Y be two independent random variables with corresponding distributions F and G on [0 ,∞ ). The distribution of the product XY , which is called the product convolution of F and G , is denoted by H . In this paper, we give some suitable conditions on F and G , under which the distribution H belongs to the long-tailed distribution class. Here F is a generalized long-tailed distribution, not necessarily an exponential distribution. Finally, we give a series ofexamples to show that our conditions are satisfied by many distributions, and one of them is necessary in some sense.</description><subject>Actuarial Sciences</subject><subject>Convolution</subject><subject>Independent variables</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Ordinary Differential Equations</subject><subject>Probability distribution functions</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Random variables</subject><issn>0363-1672</issn><issn>1573-8825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-jkc7NHKX5BoZfewyab1JZ1U5Ospf_e1BW8eZo5PO87w4PQLYF7AlA_JAKNkhgoYGi4ovhwhmZE1AwrRcU5mgGTDBNZ00t0ldIOoPAEZghWQ5XfXdWHYVPldttX-xj2LuZjFfxp70abKxuGr9CPeRuGa3Th2z65m985R-vnp_XiFS9XL2-LxyW2jDQZO8eo6Tj30ohauVpaJWTdOSNawVXLLAiivKWCctMIY4CyBrzhIJU3omNzdDfVlhc-R5ey3oUxDuWippwp1ghBZaHoRNkYUorO633cfrTxqAnokxg9idFFjP4Row8lxKZQKvCwcfGv-p_UNy5rZd0</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Cui, Zhaolei</creator><creator>Wang, Yuebao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200701</creationdate><title>On the long tail property of product convolution</title><author>Cui, Zhaolei ; Wang, Yuebao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ee32bd44f6b578e76c8567deb5a548a3c0518fc2524b95bb02390fb4068fb5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuarial Sciences</topic><topic>Convolution</topic><topic>Independent variables</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Ordinary Differential Equations</topic><topic>Probability distribution functions</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Zhaolei</creatorcontrib><creatorcontrib>Wang, Yuebao</creatorcontrib><collection>CrossRef</collection><jtitle>Lithuanian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Zhaolei</au><au>Wang, Yuebao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the long tail property of product convolution</atitle><jtitle>Lithuanian mathematical journal</jtitle><stitle>Lith Math J</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>60</volume><issue>3</issue><spage>315</spage><epage>329</epage><pages>315-329</pages><issn>0363-1672</issn><eissn>1573-8825</eissn><abstract>Let X and Y be two independent random variables with corresponding distributions F and G on [0 ,∞ ). The distribution of the product XY , which is called the product convolution of F and G , is denoted by H . In this paper, we give some suitable conditions on F and G , under which the distribution H belongs to the long-tailed distribution class. Here F is a generalized long-tailed distribution, not necessarily an exponential distribution. Finally, we give a series ofexamples to show that our conditions are satisfied by many distributions, and one of them is necessary in some sense.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10986-020-09482-w</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0363-1672
ispartof Lithuanian mathematical journal, 2020-07, Vol.60 (3), p.315-329
issn 0363-1672
1573-8825
language eng
recordid cdi_proquest_journals_2438395526
source Springer Nature
subjects Actuarial Sciences
Convolution
Independent variables
Mathematics
Mathematics and Statistics
Number Theory
Ordinary Differential Equations
Probability distribution functions
Probability Theory and Stochastic Processes
Random variables
title On the long tail property of product convolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20long%20tail%20property%20of%20product%20convolution&rft.jtitle=Lithuanian%20mathematical%20journal&rft.au=Cui,%20Zhaolei&rft.date=2020-07-01&rft.volume=60&rft.issue=3&rft.spage=315&rft.epage=329&rft.pages=315-329&rft.issn=0363-1672&rft.eissn=1573-8825&rft_id=info:doi/10.1007/s10986-020-09482-w&rft_dat=%3Cproquest_cross%3E2438395526%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-ee32bd44f6b578e76c8567deb5a548a3c0518fc2524b95bb02390fb4068fb5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2438395526&rft_id=info:pmid/&rfr_iscdi=true