Loading…

Multitime Resolution Hierarchical Attention-Based Recurrent Highway Networks for Taxi Demand Prediction

Taxi demand forecasting is an important consideration in building up smart cities. However, complex nonlinear spatiotemporal relationships in demand data make it difficult to construct an accurate prediction model. Considering that a single time resolution may not enable accurate learning of the tim...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-10
Main Authors: Chen, Baiping, Li, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c360t-1950027d418720a4e1dd217cc82fb0189959c3e41c96b7ccc236e964d372f1983
cites cdi_FETCH-LOGICAL-c360t-1950027d418720a4e1dd217cc82fb0189959c3e41c96b7ccc236e964d372f1983
container_end_page 10
container_issue 2020
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2020
creator Chen, Baiping
Li, Wei
description Taxi demand forecasting is an important consideration in building up smart cities. However, complex nonlinear spatiotemporal relationships in demand data make it difficult to construct an accurate prediction model. Considering that a single time resolution may not enable accurate learning of the time pattern of taxi demand, we expand the time series prediction model in our proposed multitime resolution hierarchical attention-based recurrent highway network (MTR-HRHN) model, using three time resolutions to model temporal closeness, period, and trend properties of demand data to capture a more comprehensive time pattern. We evaluate the MTR-HRHN on a taxi trip record dataset and the results show that the forecasting performance of the MTR-HRHN exceeds that of eight well-known methods in the short-term demand prediction in some high-demand regions.
doi_str_mv 10.1155/2020/4173094
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438588017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438588017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-1950027d418720a4e1dd217cc82fb0189959c3e41c96b7ccc236e964d372f1983</originalsourceid><addsrcrecordid>eNqFkM1LwzAYh4MoOKc3zxLwqHV5k7RNj3N-TJgfyARvJUvSLbNrZ9Iy99-bOsGjp4QfT3553wehUyBXAHE8oISSAYeUkYzvoR7ECYti4Ol-uBPKI6Ds_RAdeb8khEIMoofmj23Z2MauDH41vi7bxtYVHlvjpFMLq2SJh01jqi6OrqU3OnCqdS5EAZsvNnKLn0yzqd2Hx0Xt8FR-WXxjVrLS-MUZbVX39hgdFLL05uT37KO3u9vpaBxNnu8fRsNJpFhCmgiyOIyWag4ipURyA1pTSJUStJgREFkWZ4oZDipLZiFWlCUmS7hmKS0gE6yPzne9a1d_tsY3-bJuXRW-zClnIhaCBD99dLmjlKu9d6bI186upNvmQPJOZd6pzH9VBvxihy9speXG_kef7ejgIFTLP_pnO8G-ASgnfPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438588017</pqid></control><display><type>article</type><title>Multitime Resolution Hierarchical Attention-Based Recurrent Highway Networks for Taxi Demand Prediction</title><source>Wiley-Blackwell Open Access Collection</source><source>ProQuest - Publicly Available Content Database</source><creator>Chen, Baiping ; Li, Wei</creator><contributor>Aguilar-Lopez, Ricardo ; Ricardo Aguilar-Lopez</contributor><creatorcontrib>Chen, Baiping ; Li, Wei ; Aguilar-Lopez, Ricardo ; Ricardo Aguilar-Lopez</creatorcontrib><description>Taxi demand forecasting is an important consideration in building up smart cities. However, complex nonlinear spatiotemporal relationships in demand data make it difficult to construct an accurate prediction model. Considering that a single time resolution may not enable accurate learning of the time pattern of taxi demand, we expand the time series prediction model in our proposed multitime resolution hierarchical attention-based recurrent highway network (MTR-HRHN) model, using three time resolutions to model temporal closeness, period, and trend properties of demand data to capture a more comprehensive time pattern. We evaluate the MTR-HRHN on a taxi trip record dataset and the results show that the forecasting performance of the MTR-HRHN exceeds that of eight well-known methods in the short-term demand prediction in some high-demand regions.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/4173094</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Artificial intelligence ; Deep learning ; Demand ; Economic forecasting ; Machine learning ; Mathematical models ; Neural networks ; Prediction models ; Researchers ; Time series ; Travel</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-10</ispartof><rights>Copyright © 2020 Baiping Chen and Wei Li.</rights><rights>Copyright © 2020 Baiping Chen and Wei Li. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-1950027d418720a4e1dd217cc82fb0189959c3e41c96b7ccc236e964d372f1983</citedby><cites>FETCH-LOGICAL-c360t-1950027d418720a4e1dd217cc82fb0189959c3e41c96b7ccc236e964d372f1983</cites><orcidid>0000-0001-9730-3398 ; 0000-0003-0630-3531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2438588017/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2438588017?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Aguilar-Lopez, Ricardo</contributor><contributor>Ricardo Aguilar-Lopez</contributor><creatorcontrib>Chen, Baiping</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><title>Multitime Resolution Hierarchical Attention-Based Recurrent Highway Networks for Taxi Demand Prediction</title><title>Mathematical problems in engineering</title><description>Taxi demand forecasting is an important consideration in building up smart cities. However, complex nonlinear spatiotemporal relationships in demand data make it difficult to construct an accurate prediction model. Considering that a single time resolution may not enable accurate learning of the time pattern of taxi demand, we expand the time series prediction model in our proposed multitime resolution hierarchical attention-based recurrent highway network (MTR-HRHN) model, using three time resolutions to model temporal closeness, period, and trend properties of demand data to capture a more comprehensive time pattern. We evaluate the MTR-HRHN on a taxi trip record dataset and the results show that the forecasting performance of the MTR-HRHN exceeds that of eight well-known methods in the short-term demand prediction in some high-demand regions.</description><subject>Artificial intelligence</subject><subject>Deep learning</subject><subject>Demand</subject><subject>Economic forecasting</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Prediction models</subject><subject>Researchers</subject><subject>Time series</subject><subject>Travel</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkM1LwzAYh4MoOKc3zxLwqHV5k7RNj3N-TJgfyARvJUvSLbNrZ9Iy99-bOsGjp4QfT3553wehUyBXAHE8oISSAYeUkYzvoR7ECYti4Ol-uBPKI6Ds_RAdeb8khEIMoofmj23Z2MauDH41vi7bxtYVHlvjpFMLq2SJh01jqi6OrqU3OnCqdS5EAZsvNnKLn0yzqd2Hx0Xt8FR-WXxjVrLS-MUZbVX39hgdFLL05uT37KO3u9vpaBxNnu8fRsNJpFhCmgiyOIyWag4ipURyA1pTSJUStJgREFkWZ4oZDipLZiFWlCUmS7hmKS0gE6yPzne9a1d_tsY3-bJuXRW-zClnIhaCBD99dLmjlKu9d6bI186upNvmQPJOZd6pzH9VBvxihy9speXG_kef7ejgIFTLP_pnO8G-ASgnfPQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Chen, Baiping</creator><creator>Li, Wei</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-9730-3398</orcidid><orcidid>https://orcid.org/0000-0003-0630-3531</orcidid></search><sort><creationdate>2020</creationdate><title>Multitime Resolution Hierarchical Attention-Based Recurrent Highway Networks for Taxi Demand Prediction</title><author>Chen, Baiping ; Li, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-1950027d418720a4e1dd217cc82fb0189959c3e41c96b7ccc236e964d372f1983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Deep learning</topic><topic>Demand</topic><topic>Economic forecasting</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Prediction models</topic><topic>Researchers</topic><topic>Time series</topic><topic>Travel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Baiping</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Baiping</au><au>Li, Wei</au><au>Aguilar-Lopez, Ricardo</au><au>Ricardo Aguilar-Lopez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multitime Resolution Hierarchical Attention-Based Recurrent Highway Networks for Taxi Demand Prediction</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Taxi demand forecasting is an important consideration in building up smart cities. However, complex nonlinear spatiotemporal relationships in demand data make it difficult to construct an accurate prediction model. Considering that a single time resolution may not enable accurate learning of the time pattern of taxi demand, we expand the time series prediction model in our proposed multitime resolution hierarchical attention-based recurrent highway network (MTR-HRHN) model, using three time resolutions to model temporal closeness, period, and trend properties of demand data to capture a more comprehensive time pattern. We evaluate the MTR-HRHN on a taxi trip record dataset and the results show that the forecasting performance of the MTR-HRHN exceeds that of eight well-known methods in the short-term demand prediction in some high-demand regions.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/4173094</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9730-3398</orcidid><orcidid>https://orcid.org/0000-0003-0630-3531</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-10
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2438588017
source Wiley-Blackwell Open Access Collection; ProQuest - Publicly Available Content Database
subjects Artificial intelligence
Deep learning
Demand
Economic forecasting
Machine learning
Mathematical models
Neural networks
Prediction models
Researchers
Time series
Travel
title Multitime Resolution Hierarchical Attention-Based Recurrent Highway Networks for Taxi Demand Prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multitime%20Resolution%20Hierarchical%20Attention-Based%20Recurrent%20Highway%20Networks%20for%20Taxi%20Demand%20Prediction&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Chen,%20Baiping&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/4173094&rft_dat=%3Cproquest_cross%3E2438588017%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-1950027d418720a4e1dd217cc82fb0189959c3e41c96b7ccc236e964d372f1983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2438588017&rft_id=info:pmid/&rfr_iscdi=true