Loading…

Construction of three-dimensional MnO2/Ni network as an efficient electrode material for high performance supercapacitors

With the rapid growing interest and the usage of smart electronics devices, a considerable attention has been paid to improve the performance of energy storage devices. Herein, the 3D-MnO2/Ni electrode was fabricated using hydrogen bubble dynamic template (HBDT)-assisted electrodeposition method, in...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2020-05, Vol.342, p.136041, Article 136041
Main Authors: Swain, Nilimapriyadarsini, Mitra, Arjit, Saravanakumar, Balasubramaniam, Balasingam, Suresh Kannan, Mohanty, Smita, Nayak, Sanjay Kumar, Ramadoss, Ananthakumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the rapid growing interest and the usage of smart electronics devices, a considerable attention has been paid to improve the performance of energy storage devices. Herein, the 3D-MnO2/Ni electrode was fabricated using hydrogen bubble dynamic template (HBDT)-assisted electrodeposition method, in which several Ni nanoparticles were interconnected, arranged perpendicular to the substrate and formed the dendritic nanowall structure (3D-Ni current collector). This unique microstructure provides numerous of open pores, conductive network, more number of electroactive surface sites for the enhanced charge storage properties. The as-prepared 3D-MnO2/Ni network exhibited a high specific capacitance of 370 F g−1 (295 mF cm−2) at 5 mV s−1 with a remarkable rate capability compared to the MnO2/Ni. In addition, the 3D-MnO2/Ni electrode displays excellent long-term stability preserving a capacitance retention of 97% and a coulombic efficiency of 100% even after 5000 cycles. The present results demonstrate that the binder and conductive additive-free 3D architecture porous electrode opens up a new avenue in the fabrication of high surface area porous electrodes for high-performance supercapacitors. [Display omitted] •A highly-porous, binder free 3D-MnO2/Ni nanostructures on Ni-sheet was fabricated for supercapacitors.•A uniform MnO2 nanosheets grown on a 3D-Ni/Ni via simple electrodeposition.•The 3D-MnO2/Ni electrode exhibited enhanced capacitance, high rate capability and, better cycling stability.•The 3D porous architecture significantly contributed to excellent electrochemical performance.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2020.136041