Loading…

Direct conversion of CO2 to aromatics with high yield via a modified Fischer-Tropsch synthesis pathway

Direct Conversion of CO2 to Aromatics via a Modified Fischer-Tropsch Synthesis Process. [Display omitted] •Na doping in Fe-based catalyst is beneficial for alkenes synthesis from CO2 hydrogenation.•Na modified Fe-based catalyst (Na-Fe@C) was combined with hollow acidic zeolite H-ZSM-5 for aromatics...

Full description

Saved in:
Bibliographic Details
Published in:Applied catalysis. B, Environmental Environmental, 2020-07, Vol.269, p.118792, Article 118792
Main Authors: Wang, Yang, Kazumi, Shun, Gao, Weizhe, Gao, Xinhua, Li, Hangjie, Guo, Xiaoyu, Yoneyama, Yoshiharu, Yang, Guohui, Tsubaki, Noritatsu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-618c545d1323a2aeacc9c9f8a96fb9f02469be64711a7a522c8ca528e5c643123
cites cdi_FETCH-LOGICAL-c380t-618c545d1323a2aeacc9c9f8a96fb9f02469be64711a7a522c8ca528e5c643123
container_end_page
container_issue
container_start_page 118792
container_title Applied catalysis. B, Environmental
container_volume 269
creator Wang, Yang
Kazumi, Shun
Gao, Weizhe
Gao, Xinhua
Li, Hangjie
Guo, Xiaoyu
Yoneyama, Yoshiharu
Yang, Guohui
Tsubaki, Noritatsu
description Direct Conversion of CO2 to Aromatics via a Modified Fischer-Tropsch Synthesis Process. [Display omitted] •Na doping in Fe-based catalyst is beneficial for alkenes synthesis from CO2 hydrogenation.•Na modified Fe-based catalyst (Na-Fe@C) was combined with hollow acidic zeolite H-ZSM-5 for aromatics synthesis from CO2 hydrogenation in a single pass.•The cooperative interplay between the multifunctional catalysts guaranteed the high yield of aromatics (203.8 gCH2 kgcat−1 h−1). The direct conversion of CO2 to aromatics not only reduces carbon emissions but also provides an alternative way for value-added chemicals synthesis. Even though the hydrogenation of CO2 to aromatics has been realized via a methanol-mediated pathway or a modified Fischer-Tropsch synthesis route, low yield of aromatics is still the bottleneck of this strategy. Here, we develop a multifunctional catalyst composed of Na modified Fe-based catalyst and hollow acidic zeolite H-ZSM-5 to catalyze the hydrogenation of CO2 to aromatics by single pass. Na modified Fe-based catalyst prepared by pyrolysis of Fe-based metal-organic frameworks (Fe-MOFs) can boost the formation of alkenes intermediates because of its high active sites accessibility and precisely tailored catalytic interfaces. Thereafter, the produced alkenes can be converted to aromatics via the dehydrogenation and cyclization reactions when they diffuse to the acid sites of H-ZSM-5. The hollow H-ZSM-5 with short diffusional channels, appropriate density and strength of acid sites guaranteed the high yield of aromatics (203.8 gCH2 kgcat−1 h−1). Furthermore, the driving force in the tandem process can be attributed to the cooperative interplay between the multifunctional catalysts. The CO2 adsorbed on Fe-based catalyst can be employed as acceptors for H species produced from the dehydrogenation and cyclization reactions, thereby increasing the yield of aromatics by shifting the chemical thermodynamic equilibrium.
doi_str_mv 10.1016/j.apcatb.2020.118792
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438724104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337320302071</els_id><sourcerecordid>2438724104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-618c545d1323a2aeacc9c9f8a96fb9f02469be64711a7a522c8ca528e5c643123</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBhwscU7xXxLngoQKBaRKvZSz5Tpr4qqNg-22ytuTEs6cZrWamdV-CN1TMqOEFo_bme6MTpsZI2xYUVlW7AJNBuUZl5JfogmpWJFxXvJrdBPjlhDCOJMTZF9cAJOw8e0RQnS-xd7i-Yrh5LEOfq-TMxGfXGpw474a3DvY1fjoNNZ472tnHdR44aJpIGTr4LthwrFvUwPRRdzp1Jx0f4uurN5FuPvTKfpcvK7n79ly9fYxf15mhkuSsoJKk4u8ppxxzTRoYypTWamrwm4qS5goqg0UoqRUlzpnzEgziITcFIJTxqfoYeztgv8-QExq6w-hHU4qJrgsmaBEDC4xukzwMQawqgtur0OvKFFnomqrRqLqTFSNRIfY0xiD4YOjg6CicdAaqH8Zqtq7_wt-AM6zgMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438724104</pqid></control><display><type>article</type><title>Direct conversion of CO2 to aromatics with high yield via a modified Fischer-Tropsch synthesis pathway</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Wang, Yang ; Kazumi, Shun ; Gao, Weizhe ; Gao, Xinhua ; Li, Hangjie ; Guo, Xiaoyu ; Yoneyama, Yoshiharu ; Yang, Guohui ; Tsubaki, Noritatsu</creator><creatorcontrib>Wang, Yang ; Kazumi, Shun ; Gao, Weizhe ; Gao, Xinhua ; Li, Hangjie ; Guo, Xiaoyu ; Yoneyama, Yoshiharu ; Yang, Guohui ; Tsubaki, Noritatsu</creatorcontrib><description>Direct Conversion of CO2 to Aromatics via a Modified Fischer-Tropsch Synthesis Process. [Display omitted] •Na doping in Fe-based catalyst is beneficial for alkenes synthesis from CO2 hydrogenation.•Na modified Fe-based catalyst (Na-Fe@C) was combined with hollow acidic zeolite H-ZSM-5 for aromatics synthesis from CO2 hydrogenation in a single pass.•The cooperative interplay between the multifunctional catalysts guaranteed the high yield of aromatics (203.8 gCH2 kgcat−1 h−1). The direct conversion of CO2 to aromatics not only reduces carbon emissions but also provides an alternative way for value-added chemicals synthesis. Even though the hydrogenation of CO2 to aromatics has been realized via a methanol-mediated pathway or a modified Fischer-Tropsch synthesis route, low yield of aromatics is still the bottleneck of this strategy. Here, we develop a multifunctional catalyst composed of Na modified Fe-based catalyst and hollow acidic zeolite H-ZSM-5 to catalyze the hydrogenation of CO2 to aromatics by single pass. Na modified Fe-based catalyst prepared by pyrolysis of Fe-based metal-organic frameworks (Fe-MOFs) can boost the formation of alkenes intermediates because of its high active sites accessibility and precisely tailored catalytic interfaces. Thereafter, the produced alkenes can be converted to aromatics via the dehydrogenation and cyclization reactions when they diffuse to the acid sites of H-ZSM-5. The hollow H-ZSM-5 with short diffusional channels, appropriate density and strength of acid sites guaranteed the high yield of aromatics (203.8 gCH2 kgcat−1 h−1). Furthermore, the driving force in the tandem process can be attributed to the cooperative interplay between the multifunctional catalysts. The CO2 adsorbed on Fe-based catalyst can be employed as acceptors for H species produced from the dehydrogenation and cyclization reactions, thereby increasing the yield of aromatics by shifting the chemical thermodynamic equilibrium.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2020.118792</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alkenes ; Aromatic compounds ; Aromatics synthesis ; Carbon dioxide ; Catalysts ; Catalytic converters ; Chemical reactions ; CO2 conversion ; Dehydrogenation ; Direct conversion ; Driving force ; Fischer-Tropsch process ; Hydrogenation ; Interfaces ; Intermediates ; Iron ; Metal-organic frameworks ; Modified Fischer-Tropsch synthesis ; Pyrolysis ; Singlepass ; Thermodynamic equilibrium ; Yield ; Zeolites</subject><ispartof>Applied catalysis. B, Environmental, 2020-07, Vol.269, p.118792, Article 118792</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-618c545d1323a2aeacc9c9f8a96fb9f02469be64711a7a522c8ca528e5c643123</citedby><cites>FETCH-LOGICAL-c380t-618c545d1323a2aeacc9c9f8a96fb9f02469be64711a7a522c8ca528e5c643123</cites><orcidid>0000-0001-6786-5058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Kazumi, Shun</creatorcontrib><creatorcontrib>Gao, Weizhe</creatorcontrib><creatorcontrib>Gao, Xinhua</creatorcontrib><creatorcontrib>Li, Hangjie</creatorcontrib><creatorcontrib>Guo, Xiaoyu</creatorcontrib><creatorcontrib>Yoneyama, Yoshiharu</creatorcontrib><creatorcontrib>Yang, Guohui</creatorcontrib><creatorcontrib>Tsubaki, Noritatsu</creatorcontrib><title>Direct conversion of CO2 to aromatics with high yield via a modified Fischer-Tropsch synthesis pathway</title><title>Applied catalysis. B, Environmental</title><description>Direct Conversion of CO2 to Aromatics via a Modified Fischer-Tropsch Synthesis Process. [Display omitted] •Na doping in Fe-based catalyst is beneficial for alkenes synthesis from CO2 hydrogenation.•Na modified Fe-based catalyst (Na-Fe@C) was combined with hollow acidic zeolite H-ZSM-5 for aromatics synthesis from CO2 hydrogenation in a single pass.•The cooperative interplay between the multifunctional catalysts guaranteed the high yield of aromatics (203.8 gCH2 kgcat−1 h−1). The direct conversion of CO2 to aromatics not only reduces carbon emissions but also provides an alternative way for value-added chemicals synthesis. Even though the hydrogenation of CO2 to aromatics has been realized via a methanol-mediated pathway or a modified Fischer-Tropsch synthesis route, low yield of aromatics is still the bottleneck of this strategy. Here, we develop a multifunctional catalyst composed of Na modified Fe-based catalyst and hollow acidic zeolite H-ZSM-5 to catalyze the hydrogenation of CO2 to aromatics by single pass. Na modified Fe-based catalyst prepared by pyrolysis of Fe-based metal-organic frameworks (Fe-MOFs) can boost the formation of alkenes intermediates because of its high active sites accessibility and precisely tailored catalytic interfaces. Thereafter, the produced alkenes can be converted to aromatics via the dehydrogenation and cyclization reactions when they diffuse to the acid sites of H-ZSM-5. The hollow H-ZSM-5 with short diffusional channels, appropriate density and strength of acid sites guaranteed the high yield of aromatics (203.8 gCH2 kgcat−1 h−1). Furthermore, the driving force in the tandem process can be attributed to the cooperative interplay between the multifunctional catalysts. The CO2 adsorbed on Fe-based catalyst can be employed as acceptors for H species produced from the dehydrogenation and cyclization reactions, thereby increasing the yield of aromatics by shifting the chemical thermodynamic equilibrium.</description><subject>Alkenes</subject><subject>Aromatic compounds</subject><subject>Aromatics synthesis</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Chemical reactions</subject><subject>CO2 conversion</subject><subject>Dehydrogenation</subject><subject>Direct conversion</subject><subject>Driving force</subject><subject>Fischer-Tropsch process</subject><subject>Hydrogenation</subject><subject>Interfaces</subject><subject>Intermediates</subject><subject>Iron</subject><subject>Metal-organic frameworks</subject><subject>Modified Fischer-Tropsch synthesis</subject><subject>Pyrolysis</subject><subject>Singlepass</subject><subject>Thermodynamic equilibrium</subject><subject>Yield</subject><subject>Zeolites</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBhwscU7xXxLngoQKBaRKvZSz5Tpr4qqNg-22ytuTEs6cZrWamdV-CN1TMqOEFo_bme6MTpsZI2xYUVlW7AJNBuUZl5JfogmpWJFxXvJrdBPjlhDCOJMTZF9cAJOw8e0RQnS-xd7i-Yrh5LEOfq-TMxGfXGpw474a3DvY1fjoNNZ472tnHdR44aJpIGTr4LthwrFvUwPRRdzp1Jx0f4uurN5FuPvTKfpcvK7n79ly9fYxf15mhkuSsoJKk4u8ppxxzTRoYypTWamrwm4qS5goqg0UoqRUlzpnzEgziITcFIJTxqfoYeztgv8-QExq6w-hHU4qJrgsmaBEDC4xukzwMQawqgtur0OvKFFnomqrRqLqTFSNRIfY0xiD4YOjg6CicdAaqH8Zqtq7_wt-AM6zgMo</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Wang, Yang</creator><creator>Kazumi, Shun</creator><creator>Gao, Weizhe</creator><creator>Gao, Xinhua</creator><creator>Li, Hangjie</creator><creator>Guo, Xiaoyu</creator><creator>Yoneyama, Yoshiharu</creator><creator>Yang, Guohui</creator><creator>Tsubaki, Noritatsu</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6786-5058</orcidid></search><sort><creationdate>20200715</creationdate><title>Direct conversion of CO2 to aromatics with high yield via a modified Fischer-Tropsch synthesis pathway</title><author>Wang, Yang ; Kazumi, Shun ; Gao, Weizhe ; Gao, Xinhua ; Li, Hangjie ; Guo, Xiaoyu ; Yoneyama, Yoshiharu ; Yang, Guohui ; Tsubaki, Noritatsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-618c545d1323a2aeacc9c9f8a96fb9f02469be64711a7a522c8ca528e5c643123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkenes</topic><topic>Aromatic compounds</topic><topic>Aromatics synthesis</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Chemical reactions</topic><topic>CO2 conversion</topic><topic>Dehydrogenation</topic><topic>Direct conversion</topic><topic>Driving force</topic><topic>Fischer-Tropsch process</topic><topic>Hydrogenation</topic><topic>Interfaces</topic><topic>Intermediates</topic><topic>Iron</topic><topic>Metal-organic frameworks</topic><topic>Modified Fischer-Tropsch synthesis</topic><topic>Pyrolysis</topic><topic>Singlepass</topic><topic>Thermodynamic equilibrium</topic><topic>Yield</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Kazumi, Shun</creatorcontrib><creatorcontrib>Gao, Weizhe</creatorcontrib><creatorcontrib>Gao, Xinhua</creatorcontrib><creatorcontrib>Li, Hangjie</creatorcontrib><creatorcontrib>Guo, Xiaoyu</creatorcontrib><creatorcontrib>Yoneyama, Yoshiharu</creatorcontrib><creatorcontrib>Yang, Guohui</creatorcontrib><creatorcontrib>Tsubaki, Noritatsu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yang</au><au>Kazumi, Shun</au><au>Gao, Weizhe</au><au>Gao, Xinhua</au><au>Li, Hangjie</au><au>Guo, Xiaoyu</au><au>Yoneyama, Yoshiharu</au><au>Yang, Guohui</au><au>Tsubaki, Noritatsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct conversion of CO2 to aromatics with high yield via a modified Fischer-Tropsch synthesis pathway</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>269</volume><spage>118792</spage><pages>118792-</pages><artnum>118792</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>Direct Conversion of CO2 to Aromatics via a Modified Fischer-Tropsch Synthesis Process. [Display omitted] •Na doping in Fe-based catalyst is beneficial for alkenes synthesis from CO2 hydrogenation.•Na modified Fe-based catalyst (Na-Fe@C) was combined with hollow acidic zeolite H-ZSM-5 for aromatics synthesis from CO2 hydrogenation in a single pass.•The cooperative interplay between the multifunctional catalysts guaranteed the high yield of aromatics (203.8 gCH2 kgcat−1 h−1). The direct conversion of CO2 to aromatics not only reduces carbon emissions but also provides an alternative way for value-added chemicals synthesis. Even though the hydrogenation of CO2 to aromatics has been realized via a methanol-mediated pathway or a modified Fischer-Tropsch synthesis route, low yield of aromatics is still the bottleneck of this strategy. Here, we develop a multifunctional catalyst composed of Na modified Fe-based catalyst and hollow acidic zeolite H-ZSM-5 to catalyze the hydrogenation of CO2 to aromatics by single pass. Na modified Fe-based catalyst prepared by pyrolysis of Fe-based metal-organic frameworks (Fe-MOFs) can boost the formation of alkenes intermediates because of its high active sites accessibility and precisely tailored catalytic interfaces. Thereafter, the produced alkenes can be converted to aromatics via the dehydrogenation and cyclization reactions when they diffuse to the acid sites of H-ZSM-5. The hollow H-ZSM-5 with short diffusional channels, appropriate density and strength of acid sites guaranteed the high yield of aromatics (203.8 gCH2 kgcat−1 h−1). Furthermore, the driving force in the tandem process can be attributed to the cooperative interplay between the multifunctional catalysts. The CO2 adsorbed on Fe-based catalyst can be employed as acceptors for H species produced from the dehydrogenation and cyclization reactions, thereby increasing the yield of aromatics by shifting the chemical thermodynamic equilibrium.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2020.118792</doi><orcidid>https://orcid.org/0000-0001-6786-5058</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2020-07, Vol.269, p.118792, Article 118792
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2438724104
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Alkenes
Aromatic compounds
Aromatics synthesis
Carbon dioxide
Catalysts
Catalytic converters
Chemical reactions
CO2 conversion
Dehydrogenation
Direct conversion
Driving force
Fischer-Tropsch process
Hydrogenation
Interfaces
Intermediates
Iron
Metal-organic frameworks
Modified Fischer-Tropsch synthesis
Pyrolysis
Singlepass
Thermodynamic equilibrium
Yield
Zeolites
title Direct conversion of CO2 to aromatics with high yield via a modified Fischer-Tropsch synthesis pathway
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A53%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20conversion%20of%20CO2%20to%20aromatics%20with%20high%20yield%20via%20a%20modified%20Fischer-Tropsch%20synthesis%20pathway&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Wang,%20Yang&rft.date=2020-07-15&rft.volume=269&rft.spage=118792&rft.pages=118792-&rft.artnum=118792&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2020.118792&rft_dat=%3Cproquest_cross%3E2438724104%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-618c545d1323a2aeacc9c9f8a96fb9f02469be64711a7a522c8ca528e5c643123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2438724104&rft_id=info:pmid/&rfr_iscdi=true