Loading…
Direct conversion of CO2 to aromatics with high yield via a modified Fischer-Tropsch synthesis pathway
Direct Conversion of CO2 to Aromatics via a Modified Fischer-Tropsch Synthesis Process. [Display omitted] •Na doping in Fe-based catalyst is beneficial for alkenes synthesis from CO2 hydrogenation.•Na modified Fe-based catalyst (Na-Fe@C) was combined with hollow acidic zeolite H-ZSM-5 for aromatics...
Saved in:
Published in: | Applied catalysis. B, Environmental Environmental, 2020-07, Vol.269, p.118792, Article 118792 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-618c545d1323a2aeacc9c9f8a96fb9f02469be64711a7a522c8ca528e5c643123 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-618c545d1323a2aeacc9c9f8a96fb9f02469be64711a7a522c8ca528e5c643123 |
container_end_page | |
container_issue | |
container_start_page | 118792 |
container_title | Applied catalysis. B, Environmental |
container_volume | 269 |
creator | Wang, Yang Kazumi, Shun Gao, Weizhe Gao, Xinhua Li, Hangjie Guo, Xiaoyu Yoneyama, Yoshiharu Yang, Guohui Tsubaki, Noritatsu |
description | Direct Conversion of CO2 to Aromatics via a Modified Fischer-Tropsch Synthesis Process.
[Display omitted]
•Na doping in Fe-based catalyst is beneficial for alkenes synthesis from CO2 hydrogenation.•Na modified Fe-based catalyst (Na-Fe@C) was combined with hollow acidic zeolite H-ZSM-5 for aromatics synthesis from CO2 hydrogenation in a single pass.•The cooperative interplay between the multifunctional catalysts guaranteed the high yield of aromatics (203.8 gCH2 kgcat−1 h−1).
The direct conversion of CO2 to aromatics not only reduces carbon emissions but also provides an alternative way for value-added chemicals synthesis. Even though the hydrogenation of CO2 to aromatics has been realized via a methanol-mediated pathway or a modified Fischer-Tropsch synthesis route, low yield of aromatics is still the bottleneck of this strategy. Here, we develop a multifunctional catalyst composed of Na modified Fe-based catalyst and hollow acidic zeolite H-ZSM-5 to catalyze the hydrogenation of CO2 to aromatics by single pass. Na modified Fe-based catalyst prepared by pyrolysis of Fe-based metal-organic frameworks (Fe-MOFs) can boost the formation of alkenes intermediates because of its high active sites accessibility and precisely tailored catalytic interfaces. Thereafter, the produced alkenes can be converted to aromatics via the dehydrogenation and cyclization reactions when they diffuse to the acid sites of H-ZSM-5. The hollow H-ZSM-5 with short diffusional channels, appropriate density and strength of acid sites guaranteed the high yield of aromatics (203.8 gCH2 kgcat−1 h−1). Furthermore, the driving force in the tandem process can be attributed to the cooperative interplay between the multifunctional catalysts. The CO2 adsorbed on Fe-based catalyst can be employed as acceptors for H species produced from the dehydrogenation and cyclization reactions, thereby increasing the yield of aromatics by shifting the chemical thermodynamic equilibrium. |
doi_str_mv | 10.1016/j.apcatb.2020.118792 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438724104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337320302071</els_id><sourcerecordid>2438724104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-618c545d1323a2aeacc9c9f8a96fb9f02469be64711a7a522c8ca528e5c643123</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBhwscU7xXxLngoQKBaRKvZSz5Tpr4qqNg-22ytuTEs6cZrWamdV-CN1TMqOEFo_bme6MTpsZI2xYUVlW7AJNBuUZl5JfogmpWJFxXvJrdBPjlhDCOJMTZF9cAJOw8e0RQnS-xd7i-Yrh5LEOfq-TMxGfXGpw474a3DvY1fjoNNZ472tnHdR44aJpIGTr4LthwrFvUwPRRdzp1Jx0f4uurN5FuPvTKfpcvK7n79ly9fYxf15mhkuSsoJKk4u8ppxxzTRoYypTWamrwm4qS5goqg0UoqRUlzpnzEgziITcFIJTxqfoYeztgv8-QExq6w-hHU4qJrgsmaBEDC4xukzwMQawqgtur0OvKFFnomqrRqLqTFSNRIfY0xiD4YOjg6CicdAaqH8Zqtq7_wt-AM6zgMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438724104</pqid></control><display><type>article</type><title>Direct conversion of CO2 to aromatics with high yield via a modified Fischer-Tropsch synthesis pathway</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Wang, Yang ; Kazumi, Shun ; Gao, Weizhe ; Gao, Xinhua ; Li, Hangjie ; Guo, Xiaoyu ; Yoneyama, Yoshiharu ; Yang, Guohui ; Tsubaki, Noritatsu</creator><creatorcontrib>Wang, Yang ; Kazumi, Shun ; Gao, Weizhe ; Gao, Xinhua ; Li, Hangjie ; Guo, Xiaoyu ; Yoneyama, Yoshiharu ; Yang, Guohui ; Tsubaki, Noritatsu</creatorcontrib><description>Direct Conversion of CO2 to Aromatics via a Modified Fischer-Tropsch Synthesis Process.
[Display omitted]
•Na doping in Fe-based catalyst is beneficial for alkenes synthesis from CO2 hydrogenation.•Na modified Fe-based catalyst (Na-Fe@C) was combined with hollow acidic zeolite H-ZSM-5 for aromatics synthesis from CO2 hydrogenation in a single pass.•The cooperative interplay between the multifunctional catalysts guaranteed the high yield of aromatics (203.8 gCH2 kgcat−1 h−1).
The direct conversion of CO2 to aromatics not only reduces carbon emissions but also provides an alternative way for value-added chemicals synthesis. Even though the hydrogenation of CO2 to aromatics has been realized via a methanol-mediated pathway or a modified Fischer-Tropsch synthesis route, low yield of aromatics is still the bottleneck of this strategy. Here, we develop a multifunctional catalyst composed of Na modified Fe-based catalyst and hollow acidic zeolite H-ZSM-5 to catalyze the hydrogenation of CO2 to aromatics by single pass. Na modified Fe-based catalyst prepared by pyrolysis of Fe-based metal-organic frameworks (Fe-MOFs) can boost the formation of alkenes intermediates because of its high active sites accessibility and precisely tailored catalytic interfaces. Thereafter, the produced alkenes can be converted to aromatics via the dehydrogenation and cyclization reactions when they diffuse to the acid sites of H-ZSM-5. The hollow H-ZSM-5 with short diffusional channels, appropriate density and strength of acid sites guaranteed the high yield of aromatics (203.8 gCH2 kgcat−1 h−1). Furthermore, the driving force in the tandem process can be attributed to the cooperative interplay between the multifunctional catalysts. The CO2 adsorbed on Fe-based catalyst can be employed as acceptors for H species produced from the dehydrogenation and cyclization reactions, thereby increasing the yield of aromatics by shifting the chemical thermodynamic equilibrium.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2020.118792</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alkenes ; Aromatic compounds ; Aromatics synthesis ; Carbon dioxide ; Catalysts ; Catalytic converters ; Chemical reactions ; CO2 conversion ; Dehydrogenation ; Direct conversion ; Driving force ; Fischer-Tropsch process ; Hydrogenation ; Interfaces ; Intermediates ; Iron ; Metal-organic frameworks ; Modified Fischer-Tropsch synthesis ; Pyrolysis ; Singlepass ; Thermodynamic equilibrium ; Yield ; Zeolites</subject><ispartof>Applied catalysis. B, Environmental, 2020-07, Vol.269, p.118792, Article 118792</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-618c545d1323a2aeacc9c9f8a96fb9f02469be64711a7a522c8ca528e5c643123</citedby><cites>FETCH-LOGICAL-c380t-618c545d1323a2aeacc9c9f8a96fb9f02469be64711a7a522c8ca528e5c643123</cites><orcidid>0000-0001-6786-5058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Kazumi, Shun</creatorcontrib><creatorcontrib>Gao, Weizhe</creatorcontrib><creatorcontrib>Gao, Xinhua</creatorcontrib><creatorcontrib>Li, Hangjie</creatorcontrib><creatorcontrib>Guo, Xiaoyu</creatorcontrib><creatorcontrib>Yoneyama, Yoshiharu</creatorcontrib><creatorcontrib>Yang, Guohui</creatorcontrib><creatorcontrib>Tsubaki, Noritatsu</creatorcontrib><title>Direct conversion of CO2 to aromatics with high yield via a modified Fischer-Tropsch synthesis pathway</title><title>Applied catalysis. B, Environmental</title><description>Direct Conversion of CO2 to Aromatics via a Modified Fischer-Tropsch Synthesis Process.
[Display omitted]
•Na doping in Fe-based catalyst is beneficial for alkenes synthesis from CO2 hydrogenation.•Na modified Fe-based catalyst (Na-Fe@C) was combined with hollow acidic zeolite H-ZSM-5 for aromatics synthesis from CO2 hydrogenation in a single pass.•The cooperative interplay between the multifunctional catalysts guaranteed the high yield of aromatics (203.8 gCH2 kgcat−1 h−1).
The direct conversion of CO2 to aromatics not only reduces carbon emissions but also provides an alternative way for value-added chemicals synthesis. Even though the hydrogenation of CO2 to aromatics has been realized via a methanol-mediated pathway or a modified Fischer-Tropsch synthesis route, low yield of aromatics is still the bottleneck of this strategy. Here, we develop a multifunctional catalyst composed of Na modified Fe-based catalyst and hollow acidic zeolite H-ZSM-5 to catalyze the hydrogenation of CO2 to aromatics by single pass. Na modified Fe-based catalyst prepared by pyrolysis of Fe-based metal-organic frameworks (Fe-MOFs) can boost the formation of alkenes intermediates because of its high active sites accessibility and precisely tailored catalytic interfaces. Thereafter, the produced alkenes can be converted to aromatics via the dehydrogenation and cyclization reactions when they diffuse to the acid sites of H-ZSM-5. The hollow H-ZSM-5 with short diffusional channels, appropriate density and strength of acid sites guaranteed the high yield of aromatics (203.8 gCH2 kgcat−1 h−1). Furthermore, the driving force in the tandem process can be attributed to the cooperative interplay between the multifunctional catalysts. The CO2 adsorbed on Fe-based catalyst can be employed as acceptors for H species produced from the dehydrogenation and cyclization reactions, thereby increasing the yield of aromatics by shifting the chemical thermodynamic equilibrium.</description><subject>Alkenes</subject><subject>Aromatic compounds</subject><subject>Aromatics synthesis</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Chemical reactions</subject><subject>CO2 conversion</subject><subject>Dehydrogenation</subject><subject>Direct conversion</subject><subject>Driving force</subject><subject>Fischer-Tropsch process</subject><subject>Hydrogenation</subject><subject>Interfaces</subject><subject>Intermediates</subject><subject>Iron</subject><subject>Metal-organic frameworks</subject><subject>Modified Fischer-Tropsch synthesis</subject><subject>Pyrolysis</subject><subject>Singlepass</subject><subject>Thermodynamic equilibrium</subject><subject>Yield</subject><subject>Zeolites</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBhwscU7xXxLngoQKBaRKvZSz5Tpr4qqNg-22ytuTEs6cZrWamdV-CN1TMqOEFo_bme6MTpsZI2xYUVlW7AJNBuUZl5JfogmpWJFxXvJrdBPjlhDCOJMTZF9cAJOw8e0RQnS-xd7i-Yrh5LEOfq-TMxGfXGpw474a3DvY1fjoNNZ472tnHdR44aJpIGTr4LthwrFvUwPRRdzp1Jx0f4uurN5FuPvTKfpcvK7n79ly9fYxf15mhkuSsoJKk4u8ppxxzTRoYypTWamrwm4qS5goqg0UoqRUlzpnzEgziITcFIJTxqfoYeztgv8-QExq6w-hHU4qJrgsmaBEDC4xukzwMQawqgtur0OvKFFnomqrRqLqTFSNRIfY0xiD4YOjg6CicdAaqH8Zqtq7_wt-AM6zgMo</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Wang, Yang</creator><creator>Kazumi, Shun</creator><creator>Gao, Weizhe</creator><creator>Gao, Xinhua</creator><creator>Li, Hangjie</creator><creator>Guo, Xiaoyu</creator><creator>Yoneyama, Yoshiharu</creator><creator>Yang, Guohui</creator><creator>Tsubaki, Noritatsu</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6786-5058</orcidid></search><sort><creationdate>20200715</creationdate><title>Direct conversion of CO2 to aromatics with high yield via a modified Fischer-Tropsch synthesis pathway</title><author>Wang, Yang ; Kazumi, Shun ; Gao, Weizhe ; Gao, Xinhua ; Li, Hangjie ; Guo, Xiaoyu ; Yoneyama, Yoshiharu ; Yang, Guohui ; Tsubaki, Noritatsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-618c545d1323a2aeacc9c9f8a96fb9f02469be64711a7a522c8ca528e5c643123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkenes</topic><topic>Aromatic compounds</topic><topic>Aromatics synthesis</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Chemical reactions</topic><topic>CO2 conversion</topic><topic>Dehydrogenation</topic><topic>Direct conversion</topic><topic>Driving force</topic><topic>Fischer-Tropsch process</topic><topic>Hydrogenation</topic><topic>Interfaces</topic><topic>Intermediates</topic><topic>Iron</topic><topic>Metal-organic frameworks</topic><topic>Modified Fischer-Tropsch synthesis</topic><topic>Pyrolysis</topic><topic>Singlepass</topic><topic>Thermodynamic equilibrium</topic><topic>Yield</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Kazumi, Shun</creatorcontrib><creatorcontrib>Gao, Weizhe</creatorcontrib><creatorcontrib>Gao, Xinhua</creatorcontrib><creatorcontrib>Li, Hangjie</creatorcontrib><creatorcontrib>Guo, Xiaoyu</creatorcontrib><creatorcontrib>Yoneyama, Yoshiharu</creatorcontrib><creatorcontrib>Yang, Guohui</creatorcontrib><creatorcontrib>Tsubaki, Noritatsu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yang</au><au>Kazumi, Shun</au><au>Gao, Weizhe</au><au>Gao, Xinhua</au><au>Li, Hangjie</au><au>Guo, Xiaoyu</au><au>Yoneyama, Yoshiharu</au><au>Yang, Guohui</au><au>Tsubaki, Noritatsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct conversion of CO2 to aromatics with high yield via a modified Fischer-Tropsch synthesis pathway</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>269</volume><spage>118792</spage><pages>118792-</pages><artnum>118792</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>Direct Conversion of CO2 to Aromatics via a Modified Fischer-Tropsch Synthesis Process.
[Display omitted]
•Na doping in Fe-based catalyst is beneficial for alkenes synthesis from CO2 hydrogenation.•Na modified Fe-based catalyst (Na-Fe@C) was combined with hollow acidic zeolite H-ZSM-5 for aromatics synthesis from CO2 hydrogenation in a single pass.•The cooperative interplay between the multifunctional catalysts guaranteed the high yield of aromatics (203.8 gCH2 kgcat−1 h−1).
The direct conversion of CO2 to aromatics not only reduces carbon emissions but also provides an alternative way for value-added chemicals synthesis. Even though the hydrogenation of CO2 to aromatics has been realized via a methanol-mediated pathway or a modified Fischer-Tropsch synthesis route, low yield of aromatics is still the bottleneck of this strategy. Here, we develop a multifunctional catalyst composed of Na modified Fe-based catalyst and hollow acidic zeolite H-ZSM-5 to catalyze the hydrogenation of CO2 to aromatics by single pass. Na modified Fe-based catalyst prepared by pyrolysis of Fe-based metal-organic frameworks (Fe-MOFs) can boost the formation of alkenes intermediates because of its high active sites accessibility and precisely tailored catalytic interfaces. Thereafter, the produced alkenes can be converted to aromatics via the dehydrogenation and cyclization reactions when they diffuse to the acid sites of H-ZSM-5. The hollow H-ZSM-5 with short diffusional channels, appropriate density and strength of acid sites guaranteed the high yield of aromatics (203.8 gCH2 kgcat−1 h−1). Furthermore, the driving force in the tandem process can be attributed to the cooperative interplay between the multifunctional catalysts. The CO2 adsorbed on Fe-based catalyst can be employed as acceptors for H species produced from the dehydrogenation and cyclization reactions, thereby increasing the yield of aromatics by shifting the chemical thermodynamic equilibrium.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2020.118792</doi><orcidid>https://orcid.org/0000-0001-6786-5058</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-3373 |
ispartof | Applied catalysis. B, Environmental, 2020-07, Vol.269, p.118792, Article 118792 |
issn | 0926-3373 1873-3883 |
language | eng |
recordid | cdi_proquest_journals_2438724104 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Alkenes Aromatic compounds Aromatics synthesis Carbon dioxide Catalysts Catalytic converters Chemical reactions CO2 conversion Dehydrogenation Direct conversion Driving force Fischer-Tropsch process Hydrogenation Interfaces Intermediates Iron Metal-organic frameworks Modified Fischer-Tropsch synthesis Pyrolysis Singlepass Thermodynamic equilibrium Yield Zeolites |
title | Direct conversion of CO2 to aromatics with high yield via a modified Fischer-Tropsch synthesis pathway |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A53%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20conversion%20of%20CO2%20to%20aromatics%20with%20high%20yield%20via%20a%20modified%20Fischer-Tropsch%20synthesis%20pathway&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Wang,%20Yang&rft.date=2020-07-15&rft.volume=269&rft.spage=118792&rft.pages=118792-&rft.artnum=118792&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2020.118792&rft_dat=%3Cproquest_cross%3E2438724104%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-618c545d1323a2aeacc9c9f8a96fb9f02469be64711a7a522c8ca528e5c643123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2438724104&rft_id=info:pmid/&rfr_iscdi=true |