Loading…
Monotonicity, path product matrices, and principal submatrices
It is shown that, if for some m, 2≤m
Saved in:
Published in: | Linear algebra and its applications 2020-05, Vol.593, p.269-275 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c320t-9c8961d43f01fa4969e4f4fc29e1c53d8ecd2a9ce7139fb0c64ee3ba76f2d24c3 |
container_end_page | 275 |
container_issue | |
container_start_page | 269 |
container_title | Linear algebra and its applications |
container_volume | 593 |
creator | Bechtold, B.K. Johnson, C.R. |
description | It is shown that, if for some m, 2≤m |
doi_str_mv | 10.1016/j.laa.2020.02.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438724908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379520300604</els_id><sourcerecordid>2438724908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-9c8961d43f01fa4969e4f4fc29e1c53d8ecd2a9ce7139fb0c64ee3ba76f2d24c3</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKt_gLcFr9118tHdDYIgpX5AxYueQzpJMEu7W5Os0P_elOrV08Cb92YeP0KuKVQUaH3bVRutKwYMKmAVAD0hE9o2vKTtvD4lEwAmSt7I-Tm5iLEDANEAm5D716Ef0tB79Gk_K3Y6fRa7MJgRU7HVKXi0cVbo3mTV9-h3elPEcf23uiRnTm-ivfqdU_LxuHxfPJert6eXxcOqRM4glRJbWVMjuAPqtJC1tMIJh0xainNuWouGaYm2oVy6NWAtrOVr3dSOGSaQT8nN8W7u9jXamFQ3jKHPLxUTvG2YkNBmFz26MAwxButULr3VYa8oqAMm1amMSR0wKWAqY8qZu2PG5vrf3gYV0dserfHBYlJm8P-kfwB4OnAH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438724908</pqid></control><display><type>article</type><title>Monotonicity, path product matrices, and principal submatrices</title><source>ScienceDirect Journals</source><creator>Bechtold, B.K. ; Johnson, C.R.</creator><creatorcontrib>Bechtold, B.K. ; Johnson, C.R.</creatorcontrib><description>It is shown that, if for some m, 2≤m<n all principal submatrices of an n-by-n P-matrix A are monotone, then A is monotone, generalizing a known result that also assumed symmetry. It is also shown that the P-matrix assumption cannot be entirely eliminated. However, in addition, A is doubly monotone (n=m−1 above, without the P-matrix assumption) if and only if A−1 is invertible path product. It was known that inverse M-matrices are path product (they are more than doubly monotone). But (invertible) path product matrices are more general, and this is the first full and functional characterization of them. Several examples are given to illustrate the results and their generality.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2020.02.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Doubly monotone matrices ; Doubly nonnegative matrices ; Linear algebra ; Mathematical analysis ; Matrix methods ; Monotone matrices ; P-matrices ; Path product matrices ; Principal submatrices</subject><ispartof>Linear algebra and its applications, 2020-05, Vol.593, p.269-275</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. May 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-9c8961d43f01fa4969e4f4fc29e1c53d8ecd2a9ce7139fb0c64ee3ba76f2d24c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Bechtold, B.K.</creatorcontrib><creatorcontrib>Johnson, C.R.</creatorcontrib><title>Monotonicity, path product matrices, and principal submatrices</title><title>Linear algebra and its applications</title><description>It is shown that, if for some m, 2≤m<n all principal submatrices of an n-by-n P-matrix A are monotone, then A is monotone, generalizing a known result that also assumed symmetry. It is also shown that the P-matrix assumption cannot be entirely eliminated. However, in addition, A is doubly monotone (n=m−1 above, without the P-matrix assumption) if and only if A−1 is invertible path product. It was known that inverse M-matrices are path product (they are more than doubly monotone). But (invertible) path product matrices are more general, and this is the first full and functional characterization of them. Several examples are given to illustrate the results and their generality.</description><subject>Doubly monotone matrices</subject><subject>Doubly nonnegative matrices</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Monotone matrices</subject><subject>P-matrices</subject><subject>Path product matrices</subject><subject>Principal submatrices</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWKt_gLcFr9118tHdDYIgpX5AxYueQzpJMEu7W5Os0P_elOrV08Cb92YeP0KuKVQUaH3bVRutKwYMKmAVAD0hE9o2vKTtvD4lEwAmSt7I-Tm5iLEDANEAm5D716Ef0tB79Gk_K3Y6fRa7MJgRU7HVKXi0cVbo3mTV9-h3elPEcf23uiRnTm-ivfqdU_LxuHxfPJert6eXxcOqRM4glRJbWVMjuAPqtJC1tMIJh0xainNuWouGaYm2oVy6NWAtrOVr3dSOGSaQT8nN8W7u9jXamFQ3jKHPLxUTvG2YkNBmFz26MAwxButULr3VYa8oqAMm1amMSR0wKWAqY8qZu2PG5vrf3gYV0dserfHBYlJm8P-kfwB4OnAH</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Bechtold, B.K.</creator><creator>Johnson, C.R.</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200515</creationdate><title>Monotonicity, path product matrices, and principal submatrices</title><author>Bechtold, B.K. ; Johnson, C.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-9c8961d43f01fa4969e4f4fc29e1c53d8ecd2a9ce7139fb0c64ee3ba76f2d24c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Doubly monotone matrices</topic><topic>Doubly nonnegative matrices</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Monotone matrices</topic><topic>P-matrices</topic><topic>Path product matrices</topic><topic>Principal submatrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bechtold, B.K.</creatorcontrib><creatorcontrib>Johnson, C.R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bechtold, B.K.</au><au>Johnson, C.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monotonicity, path product matrices, and principal submatrices</atitle><jtitle>Linear algebra and its applications</jtitle><date>2020-05-15</date><risdate>2020</risdate><volume>593</volume><spage>269</spage><epage>275</epage><pages>269-275</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>It is shown that, if for some m, 2≤m<n all principal submatrices of an n-by-n P-matrix A are monotone, then A is monotone, generalizing a known result that also assumed symmetry. It is also shown that the P-matrix assumption cannot be entirely eliminated. However, in addition, A is doubly monotone (n=m−1 above, without the P-matrix assumption) if and only if A−1 is invertible path product. It was known that inverse M-matrices are path product (they are more than doubly monotone). But (invertible) path product matrices are more general, and this is the first full and functional characterization of them. Several examples are given to illustrate the results and their generality.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2020.02.001</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2020-05, Vol.593, p.269-275 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2438724908 |
source | ScienceDirect Journals |
subjects | Doubly monotone matrices Doubly nonnegative matrices Linear algebra Mathematical analysis Matrix methods Monotone matrices P-matrices Path product matrices Principal submatrices |
title | Monotonicity, path product matrices, and principal submatrices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monotonicity,%20path%20product%20matrices,%20and%20principal%20submatrices&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Bechtold,%20B.K.&rft.date=2020-05-15&rft.volume=593&rft.spage=269&rft.epage=275&rft.pages=269-275&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2020.02.001&rft_dat=%3Cproquest_cross%3E2438724908%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-9c8961d43f01fa4969e4f4fc29e1c53d8ecd2a9ce7139fb0c64ee3ba76f2d24c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2438724908&rft_id=info:pmid/&rfr_iscdi=true |