Loading…

Monotonicity, path product matrices, and principal submatrices

It is shown that, if for some m, 2≤m

Saved in:
Bibliographic Details
Published in:Linear algebra and its applications 2020-05, Vol.593, p.269-275
Main Authors: Bechtold, B.K., Johnson, C.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c320t-9c8961d43f01fa4969e4f4fc29e1c53d8ecd2a9ce7139fb0c64ee3ba76f2d24c3
container_end_page 275
container_issue
container_start_page 269
container_title Linear algebra and its applications
container_volume 593
creator Bechtold, B.K.
Johnson, C.R.
description It is shown that, if for some m, 2≤m
doi_str_mv 10.1016/j.laa.2020.02.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438724908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379520300604</els_id><sourcerecordid>2438724908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-9c8961d43f01fa4969e4f4fc29e1c53d8ecd2a9ce7139fb0c64ee3ba76f2d24c3</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKt_gLcFr9118tHdDYIgpX5AxYueQzpJMEu7W5Os0P_elOrV08Cb92YeP0KuKVQUaH3bVRutKwYMKmAVAD0hE9o2vKTtvD4lEwAmSt7I-Tm5iLEDANEAm5D716Ef0tB79Gk_K3Y6fRa7MJgRU7HVKXi0cVbo3mTV9-h3elPEcf23uiRnTm-ivfqdU_LxuHxfPJert6eXxcOqRM4glRJbWVMjuAPqtJC1tMIJh0xainNuWouGaYm2oVy6NWAtrOVr3dSOGSaQT8nN8W7u9jXamFQ3jKHPLxUTvG2YkNBmFz26MAwxButULr3VYa8oqAMm1amMSR0wKWAqY8qZu2PG5vrf3gYV0dserfHBYlJm8P-kfwB4OnAH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438724908</pqid></control><display><type>article</type><title>Monotonicity, path product matrices, and principal submatrices</title><source>ScienceDirect Journals</source><creator>Bechtold, B.K. ; Johnson, C.R.</creator><creatorcontrib>Bechtold, B.K. ; Johnson, C.R.</creatorcontrib><description>It is shown that, if for some m, 2≤m&lt;n all principal submatrices of an n-by-n P-matrix A are monotone, then A is monotone, generalizing a known result that also assumed symmetry. It is also shown that the P-matrix assumption cannot be entirely eliminated. However, in addition, A is doubly monotone (n=m−1 above, without the P-matrix assumption) if and only if A−1 is invertible path product. It was known that inverse M-matrices are path product (they are more than doubly monotone). But (invertible) path product matrices are more general, and this is the first full and functional characterization of them. Several examples are given to illustrate the results and their generality.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2020.02.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Doubly monotone matrices ; Doubly nonnegative matrices ; Linear algebra ; Mathematical analysis ; Matrix methods ; Monotone matrices ; P-matrices ; Path product matrices ; Principal submatrices</subject><ispartof>Linear algebra and its applications, 2020-05, Vol.593, p.269-275</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. May 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-9c8961d43f01fa4969e4f4fc29e1c53d8ecd2a9ce7139fb0c64ee3ba76f2d24c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Bechtold, B.K.</creatorcontrib><creatorcontrib>Johnson, C.R.</creatorcontrib><title>Monotonicity, path product matrices, and principal submatrices</title><title>Linear algebra and its applications</title><description>It is shown that, if for some m, 2≤m&lt;n all principal submatrices of an n-by-n P-matrix A are monotone, then A is monotone, generalizing a known result that also assumed symmetry. It is also shown that the P-matrix assumption cannot be entirely eliminated. However, in addition, A is doubly monotone (n=m−1 above, without the P-matrix assumption) if and only if A−1 is invertible path product. It was known that inverse M-matrices are path product (they are more than doubly monotone). But (invertible) path product matrices are more general, and this is the first full and functional characterization of them. Several examples are given to illustrate the results and their generality.</description><subject>Doubly monotone matrices</subject><subject>Doubly nonnegative matrices</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Monotone matrices</subject><subject>P-matrices</subject><subject>Path product matrices</subject><subject>Principal submatrices</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWKt_gLcFr9118tHdDYIgpX5AxYueQzpJMEu7W5Os0P_elOrV08Cb92YeP0KuKVQUaH3bVRutKwYMKmAVAD0hE9o2vKTtvD4lEwAmSt7I-Tm5iLEDANEAm5D716Ef0tB79Gk_K3Y6fRa7MJgRU7HVKXi0cVbo3mTV9-h3elPEcf23uiRnTm-ivfqdU_LxuHxfPJert6eXxcOqRM4glRJbWVMjuAPqtJC1tMIJh0xainNuWouGaYm2oVy6NWAtrOVr3dSOGSaQT8nN8W7u9jXamFQ3jKHPLxUTvG2YkNBmFz26MAwxButULr3VYa8oqAMm1amMSR0wKWAqY8qZu2PG5vrf3gYV0dserfHBYlJm8P-kfwB4OnAH</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Bechtold, B.K.</creator><creator>Johnson, C.R.</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200515</creationdate><title>Monotonicity, path product matrices, and principal submatrices</title><author>Bechtold, B.K. ; Johnson, C.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-9c8961d43f01fa4969e4f4fc29e1c53d8ecd2a9ce7139fb0c64ee3ba76f2d24c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Doubly monotone matrices</topic><topic>Doubly nonnegative matrices</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Monotone matrices</topic><topic>P-matrices</topic><topic>Path product matrices</topic><topic>Principal submatrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bechtold, B.K.</creatorcontrib><creatorcontrib>Johnson, C.R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bechtold, B.K.</au><au>Johnson, C.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monotonicity, path product matrices, and principal submatrices</atitle><jtitle>Linear algebra and its applications</jtitle><date>2020-05-15</date><risdate>2020</risdate><volume>593</volume><spage>269</spage><epage>275</epage><pages>269-275</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>It is shown that, if for some m, 2≤m&lt;n all principal submatrices of an n-by-n P-matrix A are monotone, then A is monotone, generalizing a known result that also assumed symmetry. It is also shown that the P-matrix assumption cannot be entirely eliminated. However, in addition, A is doubly monotone (n=m−1 above, without the P-matrix assumption) if and only if A−1 is invertible path product. It was known that inverse M-matrices are path product (they are more than doubly monotone). But (invertible) path product matrices are more general, and this is the first full and functional characterization of them. Several examples are given to illustrate the results and their generality.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2020.02.001</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2020-05, Vol.593, p.269-275
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2438724908
source ScienceDirect Journals
subjects Doubly monotone matrices
Doubly nonnegative matrices
Linear algebra
Mathematical analysis
Matrix methods
Monotone matrices
P-matrices
Path product matrices
Principal submatrices
title Monotonicity, path product matrices, and principal submatrices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monotonicity,%20path%20product%20matrices,%20and%20principal%20submatrices&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Bechtold,%20B.K.&rft.date=2020-05-15&rft.volume=593&rft.spage=269&rft.epage=275&rft.pages=269-275&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2020.02.001&rft_dat=%3Cproquest_cross%3E2438724908%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-9c8961d43f01fa4969e4f4fc29e1c53d8ecd2a9ce7139fb0c64ee3ba76f2d24c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2438724908&rft_id=info:pmid/&rfr_iscdi=true