Loading…
An Extended Approach on Power Conversion Efficiency Enhancement Through Deposition of ZnS-Al2S3 Blends on Silicon Solar Cells
Transparent zinc sulfide (ZnS)-aluminium sulfide (Al 2 S 3 ) composite thin-films are deposited on silicon solar cells through radio frequency (RF) sputtering method at room temperature to investigate the structural, optical, electrical, and thermal characteristics. X-ray diffraction analysis reveal...
Saved in:
Published in: | Journal of electronic materials 2020-10, Vol.49 (10), p.5937-5946 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c273x-41cad738502aa24d935be4fc81e72c79bcec2cf62b67edf00b29793aeca1c05c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c273x-41cad738502aa24d935be4fc81e72c79bcec2cf62b67edf00b29793aeca1c05c3 |
container_end_page | 5946 |
container_issue | 10 |
container_start_page | 5937 |
container_title | Journal of electronic materials |
container_volume | 49 |
creator | Velu Kaliyannan, Gobinath Palanisamy, Senthil Velmurugan Rathanasamy, Rajasekar Palanisamy, Manivasakan Nagarajan, Nithyavathy Sivaraj, Santhosh Anbupalani, Manju Sri |
description | Transparent zinc sulfide (ZnS)-aluminium sulfide (Al
2
S
3
) composite thin-films are deposited on silicon solar cells through radio frequency (RF) sputtering method at room temperature to investigate the structural, optical, electrical, and thermal characteristics. X-ray diffraction analysis reveals the presence of the powder sample (ZnS-Al
2
S
3
) and its average crystallite size is 15.83 nm. The minimum electrical resistivity (
ρ
), maximum hall mobility (
μ
), and carrier concentration (N) of ZnS-Al
2
S
3
nano-layer coated solar cells are measured to be 2.98 × 10
−3
Ω cm, 14.89 cm
2
V
−1
s
−1
and 24.88 × 10
20
cm
−3
respectively. For a time period of 25 min, ZnS-Al
2
S
3
nano-layer sputter coating produces the maximum power conversion efficiencies (PCE) of 19.38% and 21%, obtained at open and controlled atmospheric conditions, respectively. The influence of operating temperature at both these open and controlled atmospheric conditions for ZnS-Al
2
S
3
nano-layer coated silicon solar cells is observed. The ZnS-Al
2
S
3
composite demonstrates the properties of a desirable anti-reflection coating material for enhancing the PCE of solar cells. |
doi_str_mv | 10.1007/s11664-020-08361-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438806726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438806726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273x-41cad738502aa24d935be4fc81e72c79bcec2cf62b67edf00b29793aeca1c05c3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFb_gKsB19F55LmsNT6goNAK4maYTG6alDhTZ1JNF_53J0Zw5-rA4Zzvcg9C55RcUkKSK0dpHIcBYSQgKY9p0B-gCY1CHtA0fjlEEzKYEePRMTpxbkMIjWhKJ-hrpnHed6BLKPFsu7VGqhobjZ_MJ1g8N_oDrGu8kVdVoxrQao9zXUut4A10h1e1Nbt1jW9ga1zTDUlT4Ve9DGYtW3J83Xq2G4jLpm3UoKaVngxt607RUSVbB2e_OkXPt_lqfh8sHu8e5rNFoFjC-yCkSpYJTyPCpGRhmfGogLBSKYWEqSQrFCimqpgVcQJlRUjBsiTjEpSkikSKT9HFyPX_ve_AdWJjdlb7k4KFPE1JnLDYp9iYUtY4Z6ESW9u8SbsXlIhhZjHOLPzM4mdm0fsSH0vOh_Ua7B_6n9Y3q_mB1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438806726</pqid></control><display><type>article</type><title>An Extended Approach on Power Conversion Efficiency Enhancement Through Deposition of ZnS-Al2S3 Blends on Silicon Solar Cells</title><source>Springer Link</source><creator>Velu Kaliyannan, Gobinath ; Palanisamy, Senthil Velmurugan ; Rathanasamy, Rajasekar ; Palanisamy, Manivasakan ; Nagarajan, Nithyavathy ; Sivaraj, Santhosh ; Anbupalani, Manju Sri</creator><creatorcontrib>Velu Kaliyannan, Gobinath ; Palanisamy, Senthil Velmurugan ; Rathanasamy, Rajasekar ; Palanisamy, Manivasakan ; Nagarajan, Nithyavathy ; Sivaraj, Santhosh ; Anbupalani, Manju Sri</creatorcontrib><description>Transparent zinc sulfide (ZnS)-aluminium sulfide (Al
2
S
3
) composite thin-films are deposited on silicon solar cells through radio frequency (RF) sputtering method at room temperature to investigate the structural, optical, electrical, and thermal characteristics. X-ray diffraction analysis reveals the presence of the powder sample (ZnS-Al
2
S
3
) and its average crystallite size is 15.83 nm. The minimum electrical resistivity (
ρ
), maximum hall mobility (
μ
), and carrier concentration (N) of ZnS-Al
2
S
3
nano-layer coated solar cells are measured to be 2.98 × 10
−3
Ω cm, 14.89 cm
2
V
−1
s
−1
and 24.88 × 10
20
cm
−3
respectively. For a time period of 25 min, ZnS-Al
2
S
3
nano-layer sputter coating produces the maximum power conversion efficiencies (PCE) of 19.38% and 21%, obtained at open and controlled atmospheric conditions, respectively. The influence of operating temperature at both these open and controlled atmospheric conditions for ZnS-Al
2
S
3
nano-layer coated silicon solar cells is observed. The ZnS-Al
2
S
3
composite demonstrates the properties of a desirable anti-reflection coating material for enhancing the PCE of solar cells.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-020-08361-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum sulfide ; Antireflection coatings ; Carrier density ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystallites ; Electron mobility ; Electronics and Microelectronics ; Energy conversion efficiency ; Hall effect ; Instrumentation ; Materials Science ; Maximum power ; Operating temperature ; Optical and Electronic Materials ; Photovoltaic cells ; Radio frequency ; Room temperature ; Silicon ; Solar cells ; Solid State Physics ; Thin films ; Zinc sulfide</subject><ispartof>Journal of electronic materials, 2020-10, Vol.49 (10), p.5937-5946</ispartof><rights>The Minerals, Metals & Materials Society 2020</rights><rights>The Minerals, Metals & Materials Society 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273x-41cad738502aa24d935be4fc81e72c79bcec2cf62b67edf00b29793aeca1c05c3</citedby><cites>FETCH-LOGICAL-c273x-41cad738502aa24d935be4fc81e72c79bcec2cf62b67edf00b29793aeca1c05c3</cites><orcidid>0000-0002-0393-3012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Velu Kaliyannan, Gobinath</creatorcontrib><creatorcontrib>Palanisamy, Senthil Velmurugan</creatorcontrib><creatorcontrib>Rathanasamy, Rajasekar</creatorcontrib><creatorcontrib>Palanisamy, Manivasakan</creatorcontrib><creatorcontrib>Nagarajan, Nithyavathy</creatorcontrib><creatorcontrib>Sivaraj, Santhosh</creatorcontrib><creatorcontrib>Anbupalani, Manju Sri</creatorcontrib><title>An Extended Approach on Power Conversion Efficiency Enhancement Through Deposition of ZnS-Al2S3 Blends on Silicon Solar Cells</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Transparent zinc sulfide (ZnS)-aluminium sulfide (Al
2
S
3
) composite thin-films are deposited on silicon solar cells through radio frequency (RF) sputtering method at room temperature to investigate the structural, optical, electrical, and thermal characteristics. X-ray diffraction analysis reveals the presence of the powder sample (ZnS-Al
2
S
3
) and its average crystallite size is 15.83 nm. The minimum electrical resistivity (
ρ
), maximum hall mobility (
μ
), and carrier concentration (N) of ZnS-Al
2
S
3
nano-layer coated solar cells are measured to be 2.98 × 10
−3
Ω cm, 14.89 cm
2
V
−1
s
−1
and 24.88 × 10
20
cm
−3
respectively. For a time period of 25 min, ZnS-Al
2
S
3
nano-layer sputter coating produces the maximum power conversion efficiencies (PCE) of 19.38% and 21%, obtained at open and controlled atmospheric conditions, respectively. The influence of operating temperature at both these open and controlled atmospheric conditions for ZnS-Al
2
S
3
nano-layer coated silicon solar cells is observed. The ZnS-Al
2
S
3
composite demonstrates the properties of a desirable anti-reflection coating material for enhancing the PCE of solar cells.</description><subject>Aluminum sulfide</subject><subject>Antireflection coatings</subject><subject>Carrier density</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystallites</subject><subject>Electron mobility</subject><subject>Electronics and Microelectronics</subject><subject>Energy conversion efficiency</subject><subject>Hall effect</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Maximum power</subject><subject>Operating temperature</subject><subject>Optical and Electronic Materials</subject><subject>Photovoltaic cells</subject><subject>Radio frequency</subject><subject>Room temperature</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Solid State Physics</subject><subject>Thin films</subject><subject>Zinc sulfide</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFb_gKsB19F55LmsNT6goNAK4maYTG6alDhTZ1JNF_53J0Zw5-rA4Zzvcg9C55RcUkKSK0dpHIcBYSQgKY9p0B-gCY1CHtA0fjlEEzKYEePRMTpxbkMIjWhKJ-hrpnHed6BLKPFsu7VGqhobjZ_MJ1g8N_oDrGu8kVdVoxrQao9zXUut4A10h1e1Nbt1jW9ga1zTDUlT4Ve9DGYtW3J83Xq2G4jLpm3UoKaVngxt607RUSVbB2e_OkXPt_lqfh8sHu8e5rNFoFjC-yCkSpYJTyPCpGRhmfGogLBSKYWEqSQrFCimqpgVcQJlRUjBsiTjEpSkikSKT9HFyPX_ve_AdWJjdlb7k4KFPE1JnLDYp9iYUtY4Z6ESW9u8SbsXlIhhZjHOLPzM4mdm0fsSH0vOh_Ua7B_6n9Y3q_mB1Q</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Velu Kaliyannan, Gobinath</creator><creator>Palanisamy, Senthil Velmurugan</creator><creator>Rathanasamy, Rajasekar</creator><creator>Palanisamy, Manivasakan</creator><creator>Nagarajan, Nithyavathy</creator><creator>Sivaraj, Santhosh</creator><creator>Anbupalani, Manju Sri</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-0393-3012</orcidid></search><sort><creationdate>20201001</creationdate><title>An Extended Approach on Power Conversion Efficiency Enhancement Through Deposition of ZnS-Al2S3 Blends on Silicon Solar Cells</title><author>Velu Kaliyannan, Gobinath ; Palanisamy, Senthil Velmurugan ; Rathanasamy, Rajasekar ; Palanisamy, Manivasakan ; Nagarajan, Nithyavathy ; Sivaraj, Santhosh ; Anbupalani, Manju Sri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273x-41cad738502aa24d935be4fc81e72c79bcec2cf62b67edf00b29793aeca1c05c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum sulfide</topic><topic>Antireflection coatings</topic><topic>Carrier density</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystallites</topic><topic>Electron mobility</topic><topic>Electronics and Microelectronics</topic><topic>Energy conversion efficiency</topic><topic>Hall effect</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Maximum power</topic><topic>Operating temperature</topic><topic>Optical and Electronic Materials</topic><topic>Photovoltaic cells</topic><topic>Radio frequency</topic><topic>Room temperature</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Solid State Physics</topic><topic>Thin films</topic><topic>Zinc sulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velu Kaliyannan, Gobinath</creatorcontrib><creatorcontrib>Palanisamy, Senthil Velmurugan</creatorcontrib><creatorcontrib>Rathanasamy, Rajasekar</creatorcontrib><creatorcontrib>Palanisamy, Manivasakan</creatorcontrib><creatorcontrib>Nagarajan, Nithyavathy</creatorcontrib><creatorcontrib>Sivaraj, Santhosh</creatorcontrib><creatorcontrib>Anbupalani, Manju Sri</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Velu Kaliyannan, Gobinath</au><au>Palanisamy, Senthil Velmurugan</au><au>Rathanasamy, Rajasekar</au><au>Palanisamy, Manivasakan</au><au>Nagarajan, Nithyavathy</au><au>Sivaraj, Santhosh</au><au>Anbupalani, Manju Sri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Extended Approach on Power Conversion Efficiency Enhancement Through Deposition of ZnS-Al2S3 Blends on Silicon Solar Cells</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>49</volume><issue>10</issue><spage>5937</spage><epage>5946</epage><pages>5937-5946</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Transparent zinc sulfide (ZnS)-aluminium sulfide (Al
2
S
3
) composite thin-films are deposited on silicon solar cells through radio frequency (RF) sputtering method at room temperature to investigate the structural, optical, electrical, and thermal characteristics. X-ray diffraction analysis reveals the presence of the powder sample (ZnS-Al
2
S
3
) and its average crystallite size is 15.83 nm. The minimum electrical resistivity (
ρ
), maximum hall mobility (
μ
), and carrier concentration (N) of ZnS-Al
2
S
3
nano-layer coated solar cells are measured to be 2.98 × 10
−3
Ω cm, 14.89 cm
2
V
−1
s
−1
and 24.88 × 10
20
cm
−3
respectively. For a time period of 25 min, ZnS-Al
2
S
3
nano-layer sputter coating produces the maximum power conversion efficiencies (PCE) of 19.38% and 21%, obtained at open and controlled atmospheric conditions, respectively. The influence of operating temperature at both these open and controlled atmospheric conditions for ZnS-Al
2
S
3
nano-layer coated silicon solar cells is observed. The ZnS-Al
2
S
3
composite demonstrates the properties of a desirable anti-reflection coating material for enhancing the PCE of solar cells.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-020-08361-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0393-3012</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2020-10, Vol.49 (10), p.5937-5946 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2438806726 |
source | Springer Link |
subjects | Aluminum sulfide Antireflection coatings Carrier density Characterization and Evaluation of Materials Chemistry and Materials Science Crystallites Electron mobility Electronics and Microelectronics Energy conversion efficiency Hall effect Instrumentation Materials Science Maximum power Operating temperature Optical and Electronic Materials Photovoltaic cells Radio frequency Room temperature Silicon Solar cells Solid State Physics Thin films Zinc sulfide |
title | An Extended Approach on Power Conversion Efficiency Enhancement Through Deposition of ZnS-Al2S3 Blends on Silicon Solar Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Extended%20Approach%20on%20Power%20Conversion%20Efficiency%20Enhancement%20Through%20Deposition%20of%20ZnS-Al2S3%20Blends%20on%20Silicon%20Solar%20Cells&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Velu%20Kaliyannan,%20Gobinath&rft.date=2020-10-01&rft.volume=49&rft.issue=10&rft.spage=5937&rft.epage=5946&rft.pages=5937-5946&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-020-08361-x&rft_dat=%3Cproquest_cross%3E2438806726%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273x-41cad738502aa24d935be4fc81e72c79bcec2cf62b67edf00b29793aeca1c05c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2438806726&rft_id=info:pmid/&rfr_iscdi=true |