Loading…

An Extended Approach on Power Conversion Efficiency Enhancement Through Deposition of ZnS-Al2S3 Blends on Silicon Solar Cells

Transparent zinc sulfide (ZnS)-aluminium sulfide (Al 2 S 3 ) composite thin-films are deposited on silicon solar cells through radio frequency (RF) sputtering method at room temperature to investigate the structural, optical, electrical, and thermal characteristics. X-ray diffraction analysis reveal...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2020-10, Vol.49 (10), p.5937-5946
Main Authors: Velu Kaliyannan, Gobinath, Palanisamy, Senthil Velmurugan, Rathanasamy, Rajasekar, Palanisamy, Manivasakan, Nagarajan, Nithyavathy, Sivaraj, Santhosh, Anbupalani, Manju Sri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c273x-41cad738502aa24d935be4fc81e72c79bcec2cf62b67edf00b29793aeca1c05c3
cites cdi_FETCH-LOGICAL-c273x-41cad738502aa24d935be4fc81e72c79bcec2cf62b67edf00b29793aeca1c05c3
container_end_page 5946
container_issue 10
container_start_page 5937
container_title Journal of electronic materials
container_volume 49
creator Velu Kaliyannan, Gobinath
Palanisamy, Senthil Velmurugan
Rathanasamy, Rajasekar
Palanisamy, Manivasakan
Nagarajan, Nithyavathy
Sivaraj, Santhosh
Anbupalani, Manju Sri
description Transparent zinc sulfide (ZnS)-aluminium sulfide (Al 2 S 3 ) composite thin-films are deposited on silicon solar cells through radio frequency (RF) sputtering method at room temperature to investigate the structural, optical, electrical, and thermal characteristics. X-ray diffraction analysis reveals the presence of the powder sample (ZnS-Al 2 S 3 ) and its average crystallite size is 15.83 nm. The minimum electrical resistivity ( ρ ), maximum hall mobility ( μ ), and carrier concentration (N) of ZnS-Al 2 S 3 nano-layer coated solar cells are measured to be 2.98 × 10 −3  Ω cm, 14.89 cm 2  V −1  s −1 and 24.88 × 10 20  cm −3 respectively. For a time period of 25 min, ZnS-Al 2 S 3 nano-layer sputter coating produces the maximum power conversion efficiencies (PCE) of 19.38% and 21%, obtained at open and controlled atmospheric conditions, respectively. The influence of operating temperature at both these open and controlled atmospheric conditions for ZnS-Al 2 S 3 nano-layer coated silicon solar cells is observed. The ZnS-Al 2 S 3 composite demonstrates the properties of a desirable anti-reflection coating material for enhancing the PCE of solar cells.
doi_str_mv 10.1007/s11664-020-08361-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438806726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438806726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273x-41cad738502aa24d935be4fc81e72c79bcec2cf62b67edf00b29793aeca1c05c3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFb_gKsB19F55LmsNT6goNAK4maYTG6alDhTZ1JNF_53J0Zw5-rA4Zzvcg9C55RcUkKSK0dpHIcBYSQgKY9p0B-gCY1CHtA0fjlEEzKYEePRMTpxbkMIjWhKJ-hrpnHed6BLKPFsu7VGqhobjZ_MJ1g8N_oDrGu8kVdVoxrQao9zXUut4A10h1e1Nbt1jW9ga1zTDUlT4Ve9DGYtW3J83Xq2G4jLpm3UoKaVngxt607RUSVbB2e_OkXPt_lqfh8sHu8e5rNFoFjC-yCkSpYJTyPCpGRhmfGogLBSKYWEqSQrFCimqpgVcQJlRUjBsiTjEpSkikSKT9HFyPX_ve_AdWJjdlb7k4KFPE1JnLDYp9iYUtY4Z6ESW9u8SbsXlIhhZjHOLPzM4mdm0fsSH0vOh_Ua7B_6n9Y3q_mB1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438806726</pqid></control><display><type>article</type><title>An Extended Approach on Power Conversion Efficiency Enhancement Through Deposition of ZnS-Al2S3 Blends on Silicon Solar Cells</title><source>Springer Link</source><creator>Velu Kaliyannan, Gobinath ; Palanisamy, Senthil Velmurugan ; Rathanasamy, Rajasekar ; Palanisamy, Manivasakan ; Nagarajan, Nithyavathy ; Sivaraj, Santhosh ; Anbupalani, Manju Sri</creator><creatorcontrib>Velu Kaliyannan, Gobinath ; Palanisamy, Senthil Velmurugan ; Rathanasamy, Rajasekar ; Palanisamy, Manivasakan ; Nagarajan, Nithyavathy ; Sivaraj, Santhosh ; Anbupalani, Manju Sri</creatorcontrib><description>Transparent zinc sulfide (ZnS)-aluminium sulfide (Al 2 S 3 ) composite thin-films are deposited on silicon solar cells through radio frequency (RF) sputtering method at room temperature to investigate the structural, optical, electrical, and thermal characteristics. X-ray diffraction analysis reveals the presence of the powder sample (ZnS-Al 2 S 3 ) and its average crystallite size is 15.83 nm. The minimum electrical resistivity ( ρ ), maximum hall mobility ( μ ), and carrier concentration (N) of ZnS-Al 2 S 3 nano-layer coated solar cells are measured to be 2.98 × 10 −3  Ω cm, 14.89 cm 2  V −1  s −1 and 24.88 × 10 20  cm −3 respectively. For a time period of 25 min, ZnS-Al 2 S 3 nano-layer sputter coating produces the maximum power conversion efficiencies (PCE) of 19.38% and 21%, obtained at open and controlled atmospheric conditions, respectively. The influence of operating temperature at both these open and controlled atmospheric conditions for ZnS-Al 2 S 3 nano-layer coated silicon solar cells is observed. The ZnS-Al 2 S 3 composite demonstrates the properties of a desirable anti-reflection coating material for enhancing the PCE of solar cells.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-020-08361-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum sulfide ; Antireflection coatings ; Carrier density ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystallites ; Electron mobility ; Electronics and Microelectronics ; Energy conversion efficiency ; Hall effect ; Instrumentation ; Materials Science ; Maximum power ; Operating temperature ; Optical and Electronic Materials ; Photovoltaic cells ; Radio frequency ; Room temperature ; Silicon ; Solar cells ; Solid State Physics ; Thin films ; Zinc sulfide</subject><ispartof>Journal of electronic materials, 2020-10, Vol.49 (10), p.5937-5946</ispartof><rights>The Minerals, Metals &amp; Materials Society 2020</rights><rights>The Minerals, Metals &amp; Materials Society 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273x-41cad738502aa24d935be4fc81e72c79bcec2cf62b67edf00b29793aeca1c05c3</citedby><cites>FETCH-LOGICAL-c273x-41cad738502aa24d935be4fc81e72c79bcec2cf62b67edf00b29793aeca1c05c3</cites><orcidid>0000-0002-0393-3012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Velu Kaliyannan, Gobinath</creatorcontrib><creatorcontrib>Palanisamy, Senthil Velmurugan</creatorcontrib><creatorcontrib>Rathanasamy, Rajasekar</creatorcontrib><creatorcontrib>Palanisamy, Manivasakan</creatorcontrib><creatorcontrib>Nagarajan, Nithyavathy</creatorcontrib><creatorcontrib>Sivaraj, Santhosh</creatorcontrib><creatorcontrib>Anbupalani, Manju Sri</creatorcontrib><title>An Extended Approach on Power Conversion Efficiency Enhancement Through Deposition of ZnS-Al2S3 Blends on Silicon Solar Cells</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Transparent zinc sulfide (ZnS)-aluminium sulfide (Al 2 S 3 ) composite thin-films are deposited on silicon solar cells through radio frequency (RF) sputtering method at room temperature to investigate the structural, optical, electrical, and thermal characteristics. X-ray diffraction analysis reveals the presence of the powder sample (ZnS-Al 2 S 3 ) and its average crystallite size is 15.83 nm. The minimum electrical resistivity ( ρ ), maximum hall mobility ( μ ), and carrier concentration (N) of ZnS-Al 2 S 3 nano-layer coated solar cells are measured to be 2.98 × 10 −3  Ω cm, 14.89 cm 2  V −1  s −1 and 24.88 × 10 20  cm −3 respectively. For a time period of 25 min, ZnS-Al 2 S 3 nano-layer sputter coating produces the maximum power conversion efficiencies (PCE) of 19.38% and 21%, obtained at open and controlled atmospheric conditions, respectively. The influence of operating temperature at both these open and controlled atmospheric conditions for ZnS-Al 2 S 3 nano-layer coated silicon solar cells is observed. The ZnS-Al 2 S 3 composite demonstrates the properties of a desirable anti-reflection coating material for enhancing the PCE of solar cells.</description><subject>Aluminum sulfide</subject><subject>Antireflection coatings</subject><subject>Carrier density</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystallites</subject><subject>Electron mobility</subject><subject>Electronics and Microelectronics</subject><subject>Energy conversion efficiency</subject><subject>Hall effect</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Maximum power</subject><subject>Operating temperature</subject><subject>Optical and Electronic Materials</subject><subject>Photovoltaic cells</subject><subject>Radio frequency</subject><subject>Room temperature</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Solid State Physics</subject><subject>Thin films</subject><subject>Zinc sulfide</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFb_gKsB19F55LmsNT6goNAK4maYTG6alDhTZ1JNF_53J0Zw5-rA4Zzvcg9C55RcUkKSK0dpHIcBYSQgKY9p0B-gCY1CHtA0fjlEEzKYEePRMTpxbkMIjWhKJ-hrpnHed6BLKPFsu7VGqhobjZ_MJ1g8N_oDrGu8kVdVoxrQao9zXUut4A10h1e1Nbt1jW9ga1zTDUlT4Ve9DGYtW3J83Xq2G4jLpm3UoKaVngxt607RUSVbB2e_OkXPt_lqfh8sHu8e5rNFoFjC-yCkSpYJTyPCpGRhmfGogLBSKYWEqSQrFCimqpgVcQJlRUjBsiTjEpSkikSKT9HFyPX_ve_AdWJjdlb7k4KFPE1JnLDYp9iYUtY4Z6ESW9u8SbsXlIhhZjHOLPzM4mdm0fsSH0vOh_Ua7B_6n9Y3q_mB1Q</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Velu Kaliyannan, Gobinath</creator><creator>Palanisamy, Senthil Velmurugan</creator><creator>Rathanasamy, Rajasekar</creator><creator>Palanisamy, Manivasakan</creator><creator>Nagarajan, Nithyavathy</creator><creator>Sivaraj, Santhosh</creator><creator>Anbupalani, Manju Sri</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-0393-3012</orcidid></search><sort><creationdate>20201001</creationdate><title>An Extended Approach on Power Conversion Efficiency Enhancement Through Deposition of ZnS-Al2S3 Blends on Silicon Solar Cells</title><author>Velu Kaliyannan, Gobinath ; Palanisamy, Senthil Velmurugan ; Rathanasamy, Rajasekar ; Palanisamy, Manivasakan ; Nagarajan, Nithyavathy ; Sivaraj, Santhosh ; Anbupalani, Manju Sri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273x-41cad738502aa24d935be4fc81e72c79bcec2cf62b67edf00b29793aeca1c05c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum sulfide</topic><topic>Antireflection coatings</topic><topic>Carrier density</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystallites</topic><topic>Electron mobility</topic><topic>Electronics and Microelectronics</topic><topic>Energy conversion efficiency</topic><topic>Hall effect</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Maximum power</topic><topic>Operating temperature</topic><topic>Optical and Electronic Materials</topic><topic>Photovoltaic cells</topic><topic>Radio frequency</topic><topic>Room temperature</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Solid State Physics</topic><topic>Thin films</topic><topic>Zinc sulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velu Kaliyannan, Gobinath</creatorcontrib><creatorcontrib>Palanisamy, Senthil Velmurugan</creatorcontrib><creatorcontrib>Rathanasamy, Rajasekar</creatorcontrib><creatorcontrib>Palanisamy, Manivasakan</creatorcontrib><creatorcontrib>Nagarajan, Nithyavathy</creatorcontrib><creatorcontrib>Sivaraj, Santhosh</creatorcontrib><creatorcontrib>Anbupalani, Manju Sri</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Velu Kaliyannan, Gobinath</au><au>Palanisamy, Senthil Velmurugan</au><au>Rathanasamy, Rajasekar</au><au>Palanisamy, Manivasakan</au><au>Nagarajan, Nithyavathy</au><au>Sivaraj, Santhosh</au><au>Anbupalani, Manju Sri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Extended Approach on Power Conversion Efficiency Enhancement Through Deposition of ZnS-Al2S3 Blends on Silicon Solar Cells</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>49</volume><issue>10</issue><spage>5937</spage><epage>5946</epage><pages>5937-5946</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Transparent zinc sulfide (ZnS)-aluminium sulfide (Al 2 S 3 ) composite thin-films are deposited on silicon solar cells through radio frequency (RF) sputtering method at room temperature to investigate the structural, optical, electrical, and thermal characteristics. X-ray diffraction analysis reveals the presence of the powder sample (ZnS-Al 2 S 3 ) and its average crystallite size is 15.83 nm. The minimum electrical resistivity ( ρ ), maximum hall mobility ( μ ), and carrier concentration (N) of ZnS-Al 2 S 3 nano-layer coated solar cells are measured to be 2.98 × 10 −3  Ω cm, 14.89 cm 2  V −1  s −1 and 24.88 × 10 20  cm −3 respectively. For a time period of 25 min, ZnS-Al 2 S 3 nano-layer sputter coating produces the maximum power conversion efficiencies (PCE) of 19.38% and 21%, obtained at open and controlled atmospheric conditions, respectively. The influence of operating temperature at both these open and controlled atmospheric conditions for ZnS-Al 2 S 3 nano-layer coated silicon solar cells is observed. The ZnS-Al 2 S 3 composite demonstrates the properties of a desirable anti-reflection coating material for enhancing the PCE of solar cells.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-020-08361-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0393-3012</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2020-10, Vol.49 (10), p.5937-5946
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2438806726
source Springer Link
subjects Aluminum sulfide
Antireflection coatings
Carrier density
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystallites
Electron mobility
Electronics and Microelectronics
Energy conversion efficiency
Hall effect
Instrumentation
Materials Science
Maximum power
Operating temperature
Optical and Electronic Materials
Photovoltaic cells
Radio frequency
Room temperature
Silicon
Solar cells
Solid State Physics
Thin films
Zinc sulfide
title An Extended Approach on Power Conversion Efficiency Enhancement Through Deposition of ZnS-Al2S3 Blends on Silicon Solar Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Extended%20Approach%20on%20Power%20Conversion%20Efficiency%20Enhancement%20Through%20Deposition%20of%20ZnS-Al2S3%20Blends%20on%20Silicon%20Solar%20Cells&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Velu%20Kaliyannan,%20Gobinath&rft.date=2020-10-01&rft.volume=49&rft.issue=10&rft.spage=5937&rft.epage=5946&rft.pages=5937-5946&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-020-08361-x&rft_dat=%3Cproquest_cross%3E2438806726%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273x-41cad738502aa24d935be4fc81e72c79bcec2cf62b67edf00b29793aeca1c05c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2438806726&rft_id=info:pmid/&rfr_iscdi=true