Loading…
The Age Distribution of Stars in the Milky Way Bulge
The age and chemical characteristics of the Galactic bulge link to the formation and evolutionary history of the Galaxy. Data-driven methods and large surveys enable stellar ages and precision chemical abundances to be determined for vast regions of the Milky Way, including the bulge. Here, we use t...
Saved in:
Published in: | The Astrophysical journal 2020-09, Vol.900 (1), p.4 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c378t-374cb831fba80050e925da8d2173ce079dfcfbfbcaa1846ac1637961fe623a043 |
---|---|
cites | cdi_FETCH-LOGICAL-c378t-374cb831fba80050e925da8d2173ce079dfcfbfbcaa1846ac1637961fe623a043 |
container_end_page | |
container_issue | 1 |
container_start_page | 4 |
container_title | The Astrophysical journal |
container_volume | 900 |
creator | Sit, Tawny Ness, M. K. |
description | The age and chemical characteristics of the Galactic bulge link to the formation and evolutionary history of the Galaxy. Data-driven methods and large surveys enable stellar ages and precision chemical abundances to be determined for vast regions of the Milky Way, including the bulge. Here, we use the data-driven approach of The Cannon, to infer the ages and abundances for 125,367 stars in the Milky Way, using spectra from Apache Point Observatory Galaxy Evolution Experiment (apogee) DR14. We examine the ages and metallicities of 1654 bulge stars within . We focus on fields with b < 12°, and out to longitudes of l < 15°. We see that stars in the bulge are about twice as old (τ = 8 Gyr), on average, compared to those in the solar neighborhood (τ = 4 Gyr), with a larger dispersion in [Fe/H] ( 0.38 compared to 0.23 dex). This age gradient comes primarily from the low- stars. Looking along the Galactic plane, the very central field in the bulge shows by far the largest dispersion in [Fe/H] ( [Fe/H] 0.4 dex) and line-of-sight velocity ( vr 90 km s−1), and simultaneously the smallest dispersion in age. Moving out in longitude, the stars become kinematically colder and less dispersed in [Fe/H], but show a much broader range of ages. We see a signature of the X-shape within the bulge at a latitude of b = 8°, but not at b = 12°. Future apogee and other survey data, with larger sampling, affords the opportunity to extend our approach and study in more detail, to place stronger constraints on models of the Milky Way. |
doi_str_mv | 10.3847/1538-4357/ab9ff6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439007056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439007056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-374cb831fba80050e925da8d2173ce079dfcfbfbcaa1846ac1637961fe623a043</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EEqWwM1rqSug5dmJ7LKV8SEUMFMFmOY5dXEoT7GTof0-iIFgQ0-lOv_fu6SF0TuCSCsanJKMiYTTjU11I5_IDNPo5HaIRALAkp_z1GJ3EuOnXVMoRYqs3i2dri699bIIv2sZXO1w5_NToELHf4aYDHvz2fY9f9B5ftdu1PUVHTm-jPfueY_R8s1jN75Ll4-39fLZMDOWiSShnphCUuEILgAysTLNSizIlnBoLXJbOuMIVRmsiWK4N6QLKnDibp1QDo2M0GXzrUH22NjZqU7Vh171UKaMSgEOWdxQMlAlVjME6VQf_ocNeEVB9N6ovQvVFqKGbTnIxSHxV_3r-g0_-wHW9UV0GRRRTdenoF3T5cEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439007056</pqid></control><display><type>article</type><title>The Age Distribution of Stars in the Milky Way Bulge</title><source>EZB Electronic Journals Library</source><creator>Sit, Tawny ; Ness, M. K.</creator><creatorcontrib>Sit, Tawny ; Ness, M. K.</creatorcontrib><description>The age and chemical characteristics of the Galactic bulge link to the formation and evolutionary history of the Galaxy. Data-driven methods and large surveys enable stellar ages and precision chemical abundances to be determined for vast regions of the Milky Way, including the bulge. Here, we use the data-driven approach of The Cannon, to infer the ages and abundances for 125,367 stars in the Milky Way, using spectra from Apache Point Observatory Galaxy Evolution Experiment (apogee) DR14. We examine the ages and metallicities of 1654 bulge stars within . We focus on fields with b < 12°, and out to longitudes of l < 15°. We see that stars in the bulge are about twice as old (τ = 8 Gyr), on average, compared to those in the solar neighborhood (τ = 4 Gyr), with a larger dispersion in [Fe/H] ( 0.38 compared to 0.23 dex). This age gradient comes primarily from the low- stars. Looking along the Galactic plane, the very central field in the bulge shows by far the largest dispersion in [Fe/H] ( [Fe/H] 0.4 dex) and line-of-sight velocity ( vr 90 km s−1), and simultaneously the smallest dispersion in age. Moving out in longitude, the stars become kinematically colder and less dispersed in [Fe/H], but show a much broader range of ages. We see a signature of the X-shape within the bulge at a latitude of b = 8°, but not at b = 12°. Future apogee and other survey data, with larger sampling, affords the opportunity to extend our approach and study in more detail, to place stronger constraints on models of the Milky Way.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab9ff6</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Abundance ; Age ; Astrophysics ; Constraint modelling ; Dispersion ; Galactic bulge ; Galactic evolution ; Galaxies ; Milky Way ; Milky Way Galaxy ; Polls & surveys ; Solar neighborhood ; Stars & galaxies ; Stellar abundances ; Stellar age ; Stellar ages ; Stellar evolution ; Stellar properties</subject><ispartof>The Astrophysical journal, 2020-09, Vol.900 (1), p.4</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Sep 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-374cb831fba80050e925da8d2173ce079dfcfbfbcaa1846ac1637961fe623a043</citedby><cites>FETCH-LOGICAL-c378t-374cb831fba80050e925da8d2173ce079dfcfbfbcaa1846ac1637961fe623a043</cites><orcidid>0000-0001-5082-6693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sit, Tawny</creatorcontrib><creatorcontrib>Ness, M. K.</creatorcontrib><title>The Age Distribution of Stars in the Milky Way Bulge</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The age and chemical characteristics of the Galactic bulge link to the formation and evolutionary history of the Galaxy. Data-driven methods and large surveys enable stellar ages and precision chemical abundances to be determined for vast regions of the Milky Way, including the bulge. Here, we use the data-driven approach of The Cannon, to infer the ages and abundances for 125,367 stars in the Milky Way, using spectra from Apache Point Observatory Galaxy Evolution Experiment (apogee) DR14. We examine the ages and metallicities of 1654 bulge stars within . We focus on fields with b < 12°, and out to longitudes of l < 15°. We see that stars in the bulge are about twice as old (τ = 8 Gyr), on average, compared to those in the solar neighborhood (τ = 4 Gyr), with a larger dispersion in [Fe/H] ( 0.38 compared to 0.23 dex). This age gradient comes primarily from the low- stars. Looking along the Galactic plane, the very central field in the bulge shows by far the largest dispersion in [Fe/H] ( [Fe/H] 0.4 dex) and line-of-sight velocity ( vr 90 km s−1), and simultaneously the smallest dispersion in age. Moving out in longitude, the stars become kinematically colder and less dispersed in [Fe/H], but show a much broader range of ages. We see a signature of the X-shape within the bulge at a latitude of b = 8°, but not at b = 12°. Future apogee and other survey data, with larger sampling, affords the opportunity to extend our approach and study in more detail, to place stronger constraints on models of the Milky Way.</description><subject>Abundance</subject><subject>Age</subject><subject>Astrophysics</subject><subject>Constraint modelling</subject><subject>Dispersion</subject><subject>Galactic bulge</subject><subject>Galactic evolution</subject><subject>Galaxies</subject><subject>Milky Way</subject><subject>Milky Way Galaxy</subject><subject>Polls & surveys</subject><subject>Solar neighborhood</subject><subject>Stars & galaxies</subject><subject>Stellar abundances</subject><subject>Stellar age</subject><subject>Stellar ages</subject><subject>Stellar evolution</subject><subject>Stellar properties</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kL1PwzAQxS0EEqWwM1rqSug5dmJ7LKV8SEUMFMFmOY5dXEoT7GTof0-iIFgQ0-lOv_fu6SF0TuCSCsanJKMiYTTjU11I5_IDNPo5HaIRALAkp_z1GJ3EuOnXVMoRYqs3i2dri699bIIv2sZXO1w5_NToELHf4aYDHvz2fY9f9B5ftdu1PUVHTm-jPfueY_R8s1jN75Ll4-39fLZMDOWiSShnphCUuEILgAysTLNSizIlnBoLXJbOuMIVRmsiWK4N6QLKnDibp1QDo2M0GXzrUH22NjZqU7Vh171UKaMSgEOWdxQMlAlVjME6VQf_ocNeEVB9N6ovQvVFqKGbTnIxSHxV_3r-g0_-wHW9UV0GRRRTdenoF3T5cEs</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Sit, Tawny</creator><creator>Ness, M. K.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5082-6693</orcidid></search><sort><creationdate>20200901</creationdate><title>The Age Distribution of Stars in the Milky Way Bulge</title><author>Sit, Tawny ; Ness, M. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-374cb831fba80050e925da8d2173ce079dfcfbfbcaa1846ac1637961fe623a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abundance</topic><topic>Age</topic><topic>Astrophysics</topic><topic>Constraint modelling</topic><topic>Dispersion</topic><topic>Galactic bulge</topic><topic>Galactic evolution</topic><topic>Galaxies</topic><topic>Milky Way</topic><topic>Milky Way Galaxy</topic><topic>Polls & surveys</topic><topic>Solar neighborhood</topic><topic>Stars & galaxies</topic><topic>Stellar abundances</topic><topic>Stellar age</topic><topic>Stellar ages</topic><topic>Stellar evolution</topic><topic>Stellar properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sit, Tawny</creatorcontrib><creatorcontrib>Ness, M. K.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sit, Tawny</au><au>Ness, M. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Age Distribution of Stars in the Milky Way Bulge</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>900</volume><issue>1</issue><spage>4</spage><pages>4-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The age and chemical characteristics of the Galactic bulge link to the formation and evolutionary history of the Galaxy. Data-driven methods and large surveys enable stellar ages and precision chemical abundances to be determined for vast regions of the Milky Way, including the bulge. Here, we use the data-driven approach of The Cannon, to infer the ages and abundances for 125,367 stars in the Milky Way, using spectra from Apache Point Observatory Galaxy Evolution Experiment (apogee) DR14. We examine the ages and metallicities of 1654 bulge stars within . We focus on fields with b < 12°, and out to longitudes of l < 15°. We see that stars in the bulge are about twice as old (τ = 8 Gyr), on average, compared to those in the solar neighborhood (τ = 4 Gyr), with a larger dispersion in [Fe/H] ( 0.38 compared to 0.23 dex). This age gradient comes primarily from the low- stars. Looking along the Galactic plane, the very central field in the bulge shows by far the largest dispersion in [Fe/H] ( [Fe/H] 0.4 dex) and line-of-sight velocity ( vr 90 km s−1), and simultaneously the smallest dispersion in age. Moving out in longitude, the stars become kinematically colder and less dispersed in [Fe/H], but show a much broader range of ages. We see a signature of the X-shape within the bulge at a latitude of b = 8°, but not at b = 12°. Future apogee and other survey data, with larger sampling, affords the opportunity to extend our approach and study in more detail, to place stronger constraints on models of the Milky Way.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab9ff6</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5082-6693</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2020-09, Vol.900 (1), p.4 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2439007056 |
source | EZB Electronic Journals Library |
subjects | Abundance Age Astrophysics Constraint modelling Dispersion Galactic bulge Galactic evolution Galaxies Milky Way Milky Way Galaxy Polls & surveys Solar neighborhood Stars & galaxies Stellar abundances Stellar age Stellar ages Stellar evolution Stellar properties |
title | The Age Distribution of Stars in the Milky Way Bulge |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Age%20Distribution%20of%20Stars%20in%20the%20Milky%20Way%20Bulge&rft.jtitle=The%20Astrophysical%20journal&rft.au=Sit,%20Tawny&rft.date=2020-09-01&rft.volume=900&rft.issue=1&rft.spage=4&rft.pages=4-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab9ff6&rft_dat=%3Cproquest_cross%3E2439007056%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-374cb831fba80050e925da8d2173ce079dfcfbfbcaa1846ac1637961fe623a043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2439007056&rft_id=info:pmid/&rfr_iscdi=true |