Loading…
A Multidimensional Positive Definite Remapping Algorithm for Unstructured Meshes
•The new MPDATA based remapping for ALE, suitable for unstructured meshes, is derived.•Novel MPDATA based remapping is developed and validated for the derived PDEs.•Numerical results show benefits of the proposed approach, especially in terms of accuracy and multidimensionality. We report on develop...
Saved in:
Published in: | Computers & fluids 2020-03, Vol.200, p.104454, Article 104454 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-d3e4d5150e28798f787c32dbd63dad4b848ce294a77147a689b21840e327ff663 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-d3e4d5150e28798f787c32dbd63dad4b848ce294a77147a689b21840e327ff663 |
container_end_page | |
container_issue | |
container_start_page | 104454 |
container_title | Computers & fluids |
container_volume | 200 |
creator | Szmelter, Joanna Gillard, Mike |
description | •The new MPDATA based remapping for ALE, suitable for unstructured meshes, is derived.•Novel MPDATA based remapping is developed and validated for the derived PDEs.•Numerical results show benefits of the proposed approach, especially in terms of accuracy and multidimensionality.
We report on developments of a second-order, conservative, sign-preserving remapping scheme for Arbitrary Lagrangian-Eulerian (ALE) methods operating on unstructured meshes. The remapping uses concepts of the Multidimensional Positive Definite Advection Transport Algorithm (MPDATA).
The non-oscillatory infinite gauge option of MPDATA remapping is derived in volume coordinates and is based upon a general and compact edge-based data structure, developed for use within an arbitrary finite volume framework. A Flux Corrected Transport style of limiting ensures monotonicity preservation, while the construction of volume coordinates utilises median dual polygonal finite volume cells.
Theoretical developments are supported by numerical testing involving idealised cases with prescribed mesh movement for advection of scalars. The numerical investigations include an asymptotic mesh convergence study and comparisons with both MPDATA and Van Leer MUSCL remapping schemes operating on Cartesian meshes. The results demonstrate that the proposed scheme is suitable for providing accurate ALE remapping for unstructured meshes. |
doi_str_mv | 10.1016/j.compfluid.2020.104454 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439019324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793020300293</els_id><sourcerecordid>2439019324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-d3e4d5150e28798f787c32dbd63dad4b848ce294a77147a689b21840e327ff663</originalsourceid><addsrcrecordid>eNqFkN1LwzAUxYMoOKd_gwGfO_PVpn0c8xMcDnHPoUtut5S2qUk68L-3o-KrT5d7Oedw7g-hW0oWlNDsvl5o1_ZVM1izYISdrkKk4gzNaC6LhEghz9GMEJEmsuDkEl2FUJNx50zM0GaJ10MTrbEtdMG6rmzwxgUb7RHwA1S2sxHwB7Rl39tuj5fN3nkbDy2unMfbLkQ_6Dh4MHgN4QDhGl1UZRPg5nfO0fbp8XP1kry9P7-ulm-J5gWLieEgTEpTAmxsmVcyl5ozszMZN6URu1zkGlghSimpkGWWFztGc0GAM1lVWcbn6G7K7b37GiBEVbvBj_WDYoIXhBbjf6NKTirtXQgeKtV725b-W1GiTvhUrf7wqRM-NeEbncvJCeMTRwteBW2h02CsBx2VcfbfjB9TpX0f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439019324</pqid></control><display><type>article</type><title>A Multidimensional Positive Definite Remapping Algorithm for Unstructured Meshes</title><source>Elsevier</source><creator>Szmelter, Joanna ; Gillard, Mike</creator><creatorcontrib>Szmelter, Joanna ; Gillard, Mike</creatorcontrib><description>•The new MPDATA based remapping for ALE, suitable for unstructured meshes, is derived.•Novel MPDATA based remapping is developed and validated for the derived PDEs.•Numerical results show benefits of the proposed approach, especially in terms of accuracy and multidimensionality.
We report on developments of a second-order, conservative, sign-preserving remapping scheme for Arbitrary Lagrangian-Eulerian (ALE) methods operating on unstructured meshes. The remapping uses concepts of the Multidimensional Positive Definite Advection Transport Algorithm (MPDATA).
The non-oscillatory infinite gauge option of MPDATA remapping is derived in volume coordinates and is based upon a general and compact edge-based data structure, developed for use within an arbitrary finite volume framework. A Flux Corrected Transport style of limiting ensures monotonicity preservation, while the construction of volume coordinates utilises median dual polygonal finite volume cells.
Theoretical developments are supported by numerical testing involving idealised cases with prescribed mesh movement for advection of scalars. The numerical investigations include an asymptotic mesh convergence study and comparisons with both MPDATA and Van Leer MUSCL remapping schemes operating on Cartesian meshes. The results demonstrate that the proposed scheme is suitable for providing accurate ALE remapping for unstructured meshes.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2020.104454</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Advection ; Advection remapping ; ALE remapping ; Algorithms ; Cartesian coordinates ; Conservative interpolation ; Data structures ; Flux corrected transport ; MPDATA ; Multidimensional methods ; Scalars</subject><ispartof>Computers & fluids, 2020-03, Vol.200, p.104454, Article 104454</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Mar 30, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-d3e4d5150e28798f787c32dbd63dad4b848ce294a77147a689b21840e327ff663</citedby><cites>FETCH-LOGICAL-c392t-d3e4d5150e28798f787c32dbd63dad4b848ce294a77147a689b21840e327ff663</cites><orcidid>0000-0002-8752-2914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Szmelter, Joanna</creatorcontrib><creatorcontrib>Gillard, Mike</creatorcontrib><title>A Multidimensional Positive Definite Remapping Algorithm for Unstructured Meshes</title><title>Computers & fluids</title><description>•The new MPDATA based remapping for ALE, suitable for unstructured meshes, is derived.•Novel MPDATA based remapping is developed and validated for the derived PDEs.•Numerical results show benefits of the proposed approach, especially in terms of accuracy and multidimensionality.
We report on developments of a second-order, conservative, sign-preserving remapping scheme for Arbitrary Lagrangian-Eulerian (ALE) methods operating on unstructured meshes. The remapping uses concepts of the Multidimensional Positive Definite Advection Transport Algorithm (MPDATA).
The non-oscillatory infinite gauge option of MPDATA remapping is derived in volume coordinates and is based upon a general and compact edge-based data structure, developed for use within an arbitrary finite volume framework. A Flux Corrected Transport style of limiting ensures monotonicity preservation, while the construction of volume coordinates utilises median dual polygonal finite volume cells.
Theoretical developments are supported by numerical testing involving idealised cases with prescribed mesh movement for advection of scalars. The numerical investigations include an asymptotic mesh convergence study and comparisons with both MPDATA and Van Leer MUSCL remapping schemes operating on Cartesian meshes. The results demonstrate that the proposed scheme is suitable for providing accurate ALE remapping for unstructured meshes.</description><subject>Advection</subject><subject>Advection remapping</subject><subject>ALE remapping</subject><subject>Algorithms</subject><subject>Cartesian coordinates</subject><subject>Conservative interpolation</subject><subject>Data structures</subject><subject>Flux corrected transport</subject><subject>MPDATA</subject><subject>Multidimensional methods</subject><subject>Scalars</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkN1LwzAUxYMoOKd_gwGfO_PVpn0c8xMcDnHPoUtut5S2qUk68L-3o-KrT5d7Oedw7g-hW0oWlNDsvl5o1_ZVM1izYISdrkKk4gzNaC6LhEghz9GMEJEmsuDkEl2FUJNx50zM0GaJ10MTrbEtdMG6rmzwxgUb7RHwA1S2sxHwB7Rl39tuj5fN3nkbDy2unMfbLkQ_6Dh4MHgN4QDhGl1UZRPg5nfO0fbp8XP1kry9P7-ulm-J5gWLieEgTEpTAmxsmVcyl5ozszMZN6URu1zkGlghSimpkGWWFztGc0GAM1lVWcbn6G7K7b37GiBEVbvBj_WDYoIXhBbjf6NKTirtXQgeKtV725b-W1GiTvhUrf7wqRM-NeEbncvJCeMTRwteBW2h02CsBx2VcfbfjB9TpX0f</recordid><startdate>20200330</startdate><enddate>20200330</enddate><creator>Szmelter, Joanna</creator><creator>Gillard, Mike</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8752-2914</orcidid></search><sort><creationdate>20200330</creationdate><title>A Multidimensional Positive Definite Remapping Algorithm for Unstructured Meshes</title><author>Szmelter, Joanna ; Gillard, Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-d3e4d5150e28798f787c32dbd63dad4b848ce294a77147a689b21840e327ff663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advection</topic><topic>Advection remapping</topic><topic>ALE remapping</topic><topic>Algorithms</topic><topic>Cartesian coordinates</topic><topic>Conservative interpolation</topic><topic>Data structures</topic><topic>Flux corrected transport</topic><topic>MPDATA</topic><topic>Multidimensional methods</topic><topic>Scalars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szmelter, Joanna</creatorcontrib><creatorcontrib>Gillard, Mike</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szmelter, Joanna</au><au>Gillard, Mike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multidimensional Positive Definite Remapping Algorithm for Unstructured Meshes</atitle><jtitle>Computers & fluids</jtitle><date>2020-03-30</date><risdate>2020</risdate><volume>200</volume><spage>104454</spage><pages>104454-</pages><artnum>104454</artnum><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•The new MPDATA based remapping for ALE, suitable for unstructured meshes, is derived.•Novel MPDATA based remapping is developed and validated for the derived PDEs.•Numerical results show benefits of the proposed approach, especially in terms of accuracy and multidimensionality.
We report on developments of a second-order, conservative, sign-preserving remapping scheme for Arbitrary Lagrangian-Eulerian (ALE) methods operating on unstructured meshes. The remapping uses concepts of the Multidimensional Positive Definite Advection Transport Algorithm (MPDATA).
The non-oscillatory infinite gauge option of MPDATA remapping is derived in volume coordinates and is based upon a general and compact edge-based data structure, developed for use within an arbitrary finite volume framework. A Flux Corrected Transport style of limiting ensures monotonicity preservation, while the construction of volume coordinates utilises median dual polygonal finite volume cells.
Theoretical developments are supported by numerical testing involving idealised cases with prescribed mesh movement for advection of scalars. The numerical investigations include an asymptotic mesh convergence study and comparisons with both MPDATA and Van Leer MUSCL remapping schemes operating on Cartesian meshes. The results demonstrate that the proposed scheme is suitable for providing accurate ALE remapping for unstructured meshes.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2020.104454</doi><orcidid>https://orcid.org/0000-0002-8752-2914</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7930 |
ispartof | Computers & fluids, 2020-03, Vol.200, p.104454, Article 104454 |
issn | 0045-7930 1879-0747 |
language | eng |
recordid | cdi_proquest_journals_2439019324 |
source | Elsevier |
subjects | Advection Advection remapping ALE remapping Algorithms Cartesian coordinates Conservative interpolation Data structures Flux corrected transport MPDATA Multidimensional methods Scalars |
title | A Multidimensional Positive Definite Remapping Algorithm for Unstructured Meshes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A24%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multidimensional%20Positive%20Definite%20Remapping%20Algorithm%20for%20Unstructured%20Meshes&rft.jtitle=Computers%20&%20fluids&rft.au=Szmelter,%20Joanna&rft.date=2020-03-30&rft.volume=200&rft.spage=104454&rft.pages=104454-&rft.artnum=104454&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2020.104454&rft_dat=%3Cproquest_cross%3E2439019324%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-d3e4d5150e28798f787c32dbd63dad4b848ce294a77147a689b21840e327ff663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2439019324&rft_id=info:pmid/&rfr_iscdi=true |