Loading…

A Multidimensional Positive Definite Remapping Algorithm for Unstructured Meshes

•The new MPDATA based remapping for ALE, suitable for unstructured meshes, is derived.•Novel MPDATA based remapping is developed and validated for the derived PDEs.•Numerical results show benefits of the proposed approach, especially in terms of accuracy and multidimensionality. We report on develop...

Full description

Saved in:
Bibliographic Details
Published in:Computers & fluids 2020-03, Vol.200, p.104454, Article 104454
Main Authors: Szmelter, Joanna, Gillard, Mike
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-d3e4d5150e28798f787c32dbd63dad4b848ce294a77147a689b21840e327ff663
cites cdi_FETCH-LOGICAL-c392t-d3e4d5150e28798f787c32dbd63dad4b848ce294a77147a689b21840e327ff663
container_end_page
container_issue
container_start_page 104454
container_title Computers & fluids
container_volume 200
creator Szmelter, Joanna
Gillard, Mike
description •The new MPDATA based remapping for ALE, suitable for unstructured meshes, is derived.•Novel MPDATA based remapping is developed and validated for the derived PDEs.•Numerical results show benefits of the proposed approach, especially in terms of accuracy and multidimensionality. We report on developments of a second-order, conservative, sign-preserving remapping scheme for Arbitrary Lagrangian-Eulerian (ALE) methods operating on unstructured meshes. The remapping uses concepts of the Multidimensional Positive Definite Advection Transport Algorithm (MPDATA). The non-oscillatory infinite gauge option of MPDATA remapping is derived in volume coordinates and is based upon a general and compact edge-based data structure, developed for use within an arbitrary finite volume framework. A Flux Corrected Transport style of limiting ensures monotonicity preservation, while the construction of volume coordinates utilises median dual polygonal finite volume cells. Theoretical developments are supported by numerical testing involving idealised cases with prescribed mesh movement for advection of scalars. The numerical investigations include an asymptotic mesh convergence study and comparisons with both MPDATA and Van Leer MUSCL remapping schemes operating on Cartesian meshes. The results demonstrate that the proposed scheme is suitable for providing accurate ALE remapping for unstructured meshes.
doi_str_mv 10.1016/j.compfluid.2020.104454
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439019324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793020300293</els_id><sourcerecordid>2439019324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-d3e4d5150e28798f787c32dbd63dad4b848ce294a77147a689b21840e327ff663</originalsourceid><addsrcrecordid>eNqFkN1LwzAUxYMoOKd_gwGfO_PVpn0c8xMcDnHPoUtut5S2qUk68L-3o-KrT5d7Oedw7g-hW0oWlNDsvl5o1_ZVM1izYISdrkKk4gzNaC6LhEghz9GMEJEmsuDkEl2FUJNx50zM0GaJ10MTrbEtdMG6rmzwxgUb7RHwA1S2sxHwB7Rl39tuj5fN3nkbDy2unMfbLkQ_6Dh4MHgN4QDhGl1UZRPg5nfO0fbp8XP1kry9P7-ulm-J5gWLieEgTEpTAmxsmVcyl5ozszMZN6URu1zkGlghSimpkGWWFztGc0GAM1lVWcbn6G7K7b37GiBEVbvBj_WDYoIXhBbjf6NKTirtXQgeKtV725b-W1GiTvhUrf7wqRM-NeEbncvJCeMTRwteBW2h02CsBx2VcfbfjB9TpX0f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439019324</pqid></control><display><type>article</type><title>A Multidimensional Positive Definite Remapping Algorithm for Unstructured Meshes</title><source>Elsevier</source><creator>Szmelter, Joanna ; Gillard, Mike</creator><creatorcontrib>Szmelter, Joanna ; Gillard, Mike</creatorcontrib><description>•The new MPDATA based remapping for ALE, suitable for unstructured meshes, is derived.•Novel MPDATA based remapping is developed and validated for the derived PDEs.•Numerical results show benefits of the proposed approach, especially in terms of accuracy and multidimensionality. We report on developments of a second-order, conservative, sign-preserving remapping scheme for Arbitrary Lagrangian-Eulerian (ALE) methods operating on unstructured meshes. The remapping uses concepts of the Multidimensional Positive Definite Advection Transport Algorithm (MPDATA). The non-oscillatory infinite gauge option of MPDATA remapping is derived in volume coordinates and is based upon a general and compact edge-based data structure, developed for use within an arbitrary finite volume framework. A Flux Corrected Transport style of limiting ensures monotonicity preservation, while the construction of volume coordinates utilises median dual polygonal finite volume cells. Theoretical developments are supported by numerical testing involving idealised cases with prescribed mesh movement for advection of scalars. The numerical investigations include an asymptotic mesh convergence study and comparisons with both MPDATA and Van Leer MUSCL remapping schemes operating on Cartesian meshes. The results demonstrate that the proposed scheme is suitable for providing accurate ALE remapping for unstructured meshes.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2020.104454</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Advection ; Advection remapping ; ALE remapping ; Algorithms ; Cartesian coordinates ; Conservative interpolation ; Data structures ; Flux corrected transport ; MPDATA ; Multidimensional methods ; Scalars</subject><ispartof>Computers &amp; fluids, 2020-03, Vol.200, p.104454, Article 104454</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Mar 30, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-d3e4d5150e28798f787c32dbd63dad4b848ce294a77147a689b21840e327ff663</citedby><cites>FETCH-LOGICAL-c392t-d3e4d5150e28798f787c32dbd63dad4b848ce294a77147a689b21840e327ff663</cites><orcidid>0000-0002-8752-2914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Szmelter, Joanna</creatorcontrib><creatorcontrib>Gillard, Mike</creatorcontrib><title>A Multidimensional Positive Definite Remapping Algorithm for Unstructured Meshes</title><title>Computers &amp; fluids</title><description>•The new MPDATA based remapping for ALE, suitable for unstructured meshes, is derived.•Novel MPDATA based remapping is developed and validated for the derived PDEs.•Numerical results show benefits of the proposed approach, especially in terms of accuracy and multidimensionality. We report on developments of a second-order, conservative, sign-preserving remapping scheme for Arbitrary Lagrangian-Eulerian (ALE) methods operating on unstructured meshes. The remapping uses concepts of the Multidimensional Positive Definite Advection Transport Algorithm (MPDATA). The non-oscillatory infinite gauge option of MPDATA remapping is derived in volume coordinates and is based upon a general and compact edge-based data structure, developed for use within an arbitrary finite volume framework. A Flux Corrected Transport style of limiting ensures monotonicity preservation, while the construction of volume coordinates utilises median dual polygonal finite volume cells. Theoretical developments are supported by numerical testing involving idealised cases with prescribed mesh movement for advection of scalars. The numerical investigations include an asymptotic mesh convergence study and comparisons with both MPDATA and Van Leer MUSCL remapping schemes operating on Cartesian meshes. The results demonstrate that the proposed scheme is suitable for providing accurate ALE remapping for unstructured meshes.</description><subject>Advection</subject><subject>Advection remapping</subject><subject>ALE remapping</subject><subject>Algorithms</subject><subject>Cartesian coordinates</subject><subject>Conservative interpolation</subject><subject>Data structures</subject><subject>Flux corrected transport</subject><subject>MPDATA</subject><subject>Multidimensional methods</subject><subject>Scalars</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkN1LwzAUxYMoOKd_gwGfO_PVpn0c8xMcDnHPoUtut5S2qUk68L-3o-KrT5d7Oedw7g-hW0oWlNDsvl5o1_ZVM1izYISdrkKk4gzNaC6LhEghz9GMEJEmsuDkEl2FUJNx50zM0GaJ10MTrbEtdMG6rmzwxgUb7RHwA1S2sxHwB7Rl39tuj5fN3nkbDy2unMfbLkQ_6Dh4MHgN4QDhGl1UZRPg5nfO0fbp8XP1kry9P7-ulm-J5gWLieEgTEpTAmxsmVcyl5ozszMZN6URu1zkGlghSimpkGWWFztGc0GAM1lVWcbn6G7K7b37GiBEVbvBj_WDYoIXhBbjf6NKTirtXQgeKtV725b-W1GiTvhUrf7wqRM-NeEbncvJCeMTRwteBW2h02CsBx2VcfbfjB9TpX0f</recordid><startdate>20200330</startdate><enddate>20200330</enddate><creator>Szmelter, Joanna</creator><creator>Gillard, Mike</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8752-2914</orcidid></search><sort><creationdate>20200330</creationdate><title>A Multidimensional Positive Definite Remapping Algorithm for Unstructured Meshes</title><author>Szmelter, Joanna ; Gillard, Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-d3e4d5150e28798f787c32dbd63dad4b848ce294a77147a689b21840e327ff663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advection</topic><topic>Advection remapping</topic><topic>ALE remapping</topic><topic>Algorithms</topic><topic>Cartesian coordinates</topic><topic>Conservative interpolation</topic><topic>Data structures</topic><topic>Flux corrected transport</topic><topic>MPDATA</topic><topic>Multidimensional methods</topic><topic>Scalars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szmelter, Joanna</creatorcontrib><creatorcontrib>Gillard, Mike</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szmelter, Joanna</au><au>Gillard, Mike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multidimensional Positive Definite Remapping Algorithm for Unstructured Meshes</atitle><jtitle>Computers &amp; fluids</jtitle><date>2020-03-30</date><risdate>2020</risdate><volume>200</volume><spage>104454</spage><pages>104454-</pages><artnum>104454</artnum><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•The new MPDATA based remapping for ALE, suitable for unstructured meshes, is derived.•Novel MPDATA based remapping is developed and validated for the derived PDEs.•Numerical results show benefits of the proposed approach, especially in terms of accuracy and multidimensionality. We report on developments of a second-order, conservative, sign-preserving remapping scheme for Arbitrary Lagrangian-Eulerian (ALE) methods operating on unstructured meshes. The remapping uses concepts of the Multidimensional Positive Definite Advection Transport Algorithm (MPDATA). The non-oscillatory infinite gauge option of MPDATA remapping is derived in volume coordinates and is based upon a general and compact edge-based data structure, developed for use within an arbitrary finite volume framework. A Flux Corrected Transport style of limiting ensures monotonicity preservation, while the construction of volume coordinates utilises median dual polygonal finite volume cells. Theoretical developments are supported by numerical testing involving idealised cases with prescribed mesh movement for advection of scalars. The numerical investigations include an asymptotic mesh convergence study and comparisons with both MPDATA and Van Leer MUSCL remapping schemes operating on Cartesian meshes. The results demonstrate that the proposed scheme is suitable for providing accurate ALE remapping for unstructured meshes.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2020.104454</doi><orcidid>https://orcid.org/0000-0002-8752-2914</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2020-03, Vol.200, p.104454, Article 104454
issn 0045-7930
1879-0747
language eng
recordid cdi_proquest_journals_2439019324
source Elsevier
subjects Advection
Advection remapping
ALE remapping
Algorithms
Cartesian coordinates
Conservative interpolation
Data structures
Flux corrected transport
MPDATA
Multidimensional methods
Scalars
title A Multidimensional Positive Definite Remapping Algorithm for Unstructured Meshes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A24%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multidimensional%20Positive%20Definite%20Remapping%20Algorithm%20for%20Unstructured%20Meshes&rft.jtitle=Computers%20&%20fluids&rft.au=Szmelter,%20Joanna&rft.date=2020-03-30&rft.volume=200&rft.spage=104454&rft.pages=104454-&rft.artnum=104454&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2020.104454&rft_dat=%3Cproquest_cross%3E2439019324%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-d3e4d5150e28798f787c32dbd63dad4b848ce294a77147a689b21840e327ff663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2439019324&rft_id=info:pmid/&rfr_iscdi=true