Loading…
Determining optimal suspension system parameters for spring fatigue life using design of experiment
This paper presents the optimization of spring fatigue life associated with suspension system parameters using the design of experiment approach. The effects of suspension parameters on spring fatigue life were analyzed because this process can improve spring fatigue life from a distinct perspective...
Saved in:
Published in: | Mechanics & industry : an international journal on mechanical sciences and engineering applications 2019, Vol.20 (6), p.621 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c296t-546969655f53549c1cacc9ce722c260b1c2aed612ca5dd77314d1a9e4b48c9063 |
container_end_page | |
container_issue | 6 |
container_start_page | 621 |
container_title | Mechanics & industry : an international journal on mechanical sciences and engineering applications |
container_volume | 20 |
creator | Kong, Yat Sheng Abdullah, Shahrum Schramm, Dieter Singh, Salvinder Singh Karam |
description | This paper presents the optimization of spring fatigue life associated with suspension system parameters using the design of experiment approach. The effects of suspension parameters on spring fatigue life were analyzed because this process can improve spring fatigue life from a distinct perspective. A quarter car model simulation was performed to obtain the force time histories for fatigue life prediction where the suspension parameters were adjusted. Multiple input regression and interaction plots were conducted to identify the interaction between these parameters. A full factorial experiment was performed to determine the optimal suspension settings that would maximize the spring fatigue life. For the regression, a high R 2 value of 0.9078 was obtained, indicating good fitting. The established regression showed normality and homoscedasticity for consistent prediction outcome. Reducing the spring stiffness and sprung mass while enhancing the damping coefficient is therefore suggested to enhance fatigue life. |
doi_str_mv | 10.1051/meca/2019062 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439038995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439038995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-546969655f53549c1cacc9ce722c260b1c2aed612ca5dd77314d1a9e4b48c9063</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhoMoWGrvfICAt67NOc2lVKtiQfDUy5BmZ0tq92CyC-3bu0uLzMUMw8cM_4fQNSV3lEg6LcG7KSPUEMXO0IgxqTOtJTn_n7W-RJOUtoQQqowRQo2Qf4AWYhmqUG1w3bShdDucutRAlUJd4XRILZS4cdGVA5lwUUecmjjwhWvDpgO8CwXgLg2rHFLYVLguMOwbiKGEqr1CF4XbJZic-hh9LR4_58_Z8u3pZX6_zDwzqs2kUKYvKQvJpTCeeue98aAZ80yRNfXMQa4o807mudacipw6A2ItZr5Pzcfo5ni3ifVvB6m127qLVf_SMsEN4TNjZE_dHikf65QiFLYPU7p4sJTYwaQdTNqTyR7PjnjoRez_WRd_rNJcSzsjK0s-Fu-rb_5qV_wPS0N3Sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439038995</pqid></control><display><type>article</type><title>Determining optimal suspension system parameters for spring fatigue life using design of experiment</title><source>DOAJ Directory of Open Access Journals</source><creator>Kong, Yat Sheng ; Abdullah, Shahrum ; Schramm, Dieter ; Singh, Salvinder Singh Karam</creator><creatorcontrib>Kong, Yat Sheng ; Abdullah, Shahrum ; Schramm, Dieter ; Singh, Salvinder Singh Karam</creatorcontrib><description>This paper presents the optimization of spring fatigue life associated with suspension system parameters using the design of experiment approach. The effects of suspension parameters on spring fatigue life were analyzed because this process can improve spring fatigue life from a distinct perspective. A quarter car model simulation was performed to obtain the force time histories for fatigue life prediction where the suspension parameters were adjusted. Multiple input regression and interaction plots were conducted to identify the interaction between these parameters. A full factorial experiment was performed to determine the optimal suspension settings that would maximize the spring fatigue life. For the regression, a high R 2 value of 0.9078 was obtained, indicating good fitting. The established regression showed normality and homoscedasticity for consistent prediction outcome. Reducing the spring stiffness and sprung mass while enhancing the damping coefficient is therefore suggested to enhance fatigue life.</description><identifier>ISSN: 2257-7777</identifier><identifier>EISSN: 2257-7750</identifier><identifier>DOI: 10.1051/meca/2019062</identifier><language>eng</language><publisher>Villeurbanne: EDP Sciences</publisher><subject>Automobiles ; automotive suspension ; Computer simulation ; Damping ; design of experiment ; Design of experiments ; Design parameters ; Ductility ; Fatigue life ; finite element analysis ; Interaction parameters ; Life prediction ; multiple input regression ; Normality ; Optimization ; Optimization techniques ; Parameter identification ; Regression analysis ; Roads & highways ; Simulation ; Stiffness ; Suspension systems</subject><ispartof>Mechanics & industry : an international journal on mechanical sciences and engineering applications, 2019, Vol.20 (6), p.621</ispartof><rights>2019. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.mechanics-industry.org/articles/meca/full_html/2019/06/mi180235/mi180235.html .</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-546969655f53549c1cacc9ce722c260b1c2aed612ca5dd77314d1a9e4b48c9063</cites><orcidid>0000-0003-4201-266X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Kong, Yat Sheng</creatorcontrib><creatorcontrib>Abdullah, Shahrum</creatorcontrib><creatorcontrib>Schramm, Dieter</creatorcontrib><creatorcontrib>Singh, Salvinder Singh Karam</creatorcontrib><title>Determining optimal suspension system parameters for spring fatigue life using design of experiment</title><title>Mechanics & industry : an international journal on mechanical sciences and engineering applications</title><description>This paper presents the optimization of spring fatigue life associated with suspension system parameters using the design of experiment approach. The effects of suspension parameters on spring fatigue life were analyzed because this process can improve spring fatigue life from a distinct perspective. A quarter car model simulation was performed to obtain the force time histories for fatigue life prediction where the suspension parameters were adjusted. Multiple input regression and interaction plots were conducted to identify the interaction between these parameters. A full factorial experiment was performed to determine the optimal suspension settings that would maximize the spring fatigue life. For the regression, a high R 2 value of 0.9078 was obtained, indicating good fitting. The established regression showed normality and homoscedasticity for consistent prediction outcome. Reducing the spring stiffness and sprung mass while enhancing the damping coefficient is therefore suggested to enhance fatigue life.</description><subject>Automobiles</subject><subject>automotive suspension</subject><subject>Computer simulation</subject><subject>Damping</subject><subject>design of experiment</subject><subject>Design of experiments</subject><subject>Design parameters</subject><subject>Ductility</subject><subject>Fatigue life</subject><subject>finite element analysis</subject><subject>Interaction parameters</subject><subject>Life prediction</subject><subject>multiple input regression</subject><subject>Normality</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Parameter identification</subject><subject>Regression analysis</subject><subject>Roads & highways</subject><subject>Simulation</subject><subject>Stiffness</subject><subject>Suspension systems</subject><issn>2257-7777</issn><issn>2257-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kNtKAzEQhoMoWGrvfICAt67NOc2lVKtiQfDUy5BmZ0tq92CyC-3bu0uLzMUMw8cM_4fQNSV3lEg6LcG7KSPUEMXO0IgxqTOtJTn_n7W-RJOUtoQQqowRQo2Qf4AWYhmqUG1w3bShdDucutRAlUJd4XRILZS4cdGVA5lwUUecmjjwhWvDpgO8CwXgLg2rHFLYVLguMOwbiKGEqr1CF4XbJZic-hh9LR4_58_Z8u3pZX6_zDwzqs2kUKYvKQvJpTCeeue98aAZ80yRNfXMQa4o807mudacipw6A2ItZr5Pzcfo5ni3ifVvB6m127qLVf_SMsEN4TNjZE_dHikf65QiFLYPU7p4sJTYwaQdTNqTyR7PjnjoRez_WRd_rNJcSzsjK0s-Fu-rb_5qV_wPS0N3Sg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Kong, Yat Sheng</creator><creator>Abdullah, Shahrum</creator><creator>Schramm, Dieter</creator><creator>Singh, Salvinder Singh Karam</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-4201-266X</orcidid></search><sort><creationdate>2019</creationdate><title>Determining optimal suspension system parameters for spring fatigue life using design of experiment</title><author>Kong, Yat Sheng ; Abdullah, Shahrum ; Schramm, Dieter ; Singh, Salvinder Singh Karam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-546969655f53549c1cacc9ce722c260b1c2aed612ca5dd77314d1a9e4b48c9063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automobiles</topic><topic>automotive suspension</topic><topic>Computer simulation</topic><topic>Damping</topic><topic>design of experiment</topic><topic>Design of experiments</topic><topic>Design parameters</topic><topic>Ductility</topic><topic>Fatigue life</topic><topic>finite element analysis</topic><topic>Interaction parameters</topic><topic>Life prediction</topic><topic>multiple input regression</topic><topic>Normality</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Parameter identification</topic><topic>Regression analysis</topic><topic>Roads & highways</topic><topic>Simulation</topic><topic>Stiffness</topic><topic>Suspension systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Yat Sheng</creatorcontrib><creatorcontrib>Abdullah, Shahrum</creatorcontrib><creatorcontrib>Schramm, Dieter</creatorcontrib><creatorcontrib>Singh, Salvinder Singh Karam</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Mechanics & industry : an international journal on mechanical sciences and engineering applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Yat Sheng</au><au>Abdullah, Shahrum</au><au>Schramm, Dieter</au><au>Singh, Salvinder Singh Karam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining optimal suspension system parameters for spring fatigue life using design of experiment</atitle><jtitle>Mechanics & industry : an international journal on mechanical sciences and engineering applications</jtitle><date>2019</date><risdate>2019</risdate><volume>20</volume><issue>6</issue><spage>621</spage><pages>621-</pages><issn>2257-7777</issn><eissn>2257-7750</eissn><abstract>This paper presents the optimization of spring fatigue life associated with suspension system parameters using the design of experiment approach. The effects of suspension parameters on spring fatigue life were analyzed because this process can improve spring fatigue life from a distinct perspective. A quarter car model simulation was performed to obtain the force time histories for fatigue life prediction where the suspension parameters were adjusted. Multiple input regression and interaction plots were conducted to identify the interaction between these parameters. A full factorial experiment was performed to determine the optimal suspension settings that would maximize the spring fatigue life. For the regression, a high R 2 value of 0.9078 was obtained, indicating good fitting. The established regression showed normality and homoscedasticity for consistent prediction outcome. Reducing the spring stiffness and sprung mass while enhancing the damping coefficient is therefore suggested to enhance fatigue life.</abstract><cop>Villeurbanne</cop><pub>EDP Sciences</pub><doi>10.1051/meca/2019062</doi><orcidid>https://orcid.org/0000-0003-4201-266X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2257-7777 |
ispartof | Mechanics & industry : an international journal on mechanical sciences and engineering applications, 2019, Vol.20 (6), p.621 |
issn | 2257-7777 2257-7750 |
language | eng |
recordid | cdi_proquest_journals_2439038995 |
source | DOAJ Directory of Open Access Journals |
subjects | Automobiles automotive suspension Computer simulation Damping design of experiment Design of experiments Design parameters Ductility Fatigue life finite element analysis Interaction parameters Life prediction multiple input regression Normality Optimization Optimization techniques Parameter identification Regression analysis Roads & highways Simulation Stiffness Suspension systems |
title | Determining optimal suspension system parameters for spring fatigue life using design of experiment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20optimal%20suspension%20system%20parameters%20for%20spring%20fatigue%20life%20using%20design%20of%20experiment&rft.jtitle=Mechanics%20&%20industry%20:%20an%20international%20journal%20on%20mechanical%20sciences%20and%20engineering%20applications&rft.au=Kong,%20Yat%20Sheng&rft.date=2019&rft.volume=20&rft.issue=6&rft.spage=621&rft.pages=621-&rft.issn=2257-7777&rft.eissn=2257-7750&rft_id=info:doi/10.1051/meca/2019062&rft_dat=%3Cproquest_cross%3E2439038995%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-546969655f53549c1cacc9ce722c260b1c2aed612ca5dd77314d1a9e4b48c9063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2439038995&rft_id=info:pmid/&rfr_iscdi=true |