Loading…

Determining optimal suspension system parameters for spring fatigue life using design of experiment

This paper presents the optimization of spring fatigue life associated with suspension system parameters using the design of experiment approach. The effects of suspension parameters on spring fatigue life were analyzed because this process can improve spring fatigue life from a distinct perspective...

Full description

Saved in:
Bibliographic Details
Published in:Mechanics & industry : an international journal on mechanical sciences and engineering applications 2019, Vol.20 (6), p.621
Main Authors: Kong, Yat Sheng, Abdullah, Shahrum, Schramm, Dieter, Singh, Salvinder Singh Karam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c296t-546969655f53549c1cacc9ce722c260b1c2aed612ca5dd77314d1a9e4b48c9063
container_end_page
container_issue 6
container_start_page 621
container_title Mechanics & industry : an international journal on mechanical sciences and engineering applications
container_volume 20
creator Kong, Yat Sheng
Abdullah, Shahrum
Schramm, Dieter
Singh, Salvinder Singh Karam
description This paper presents the optimization of spring fatigue life associated with suspension system parameters using the design of experiment approach. The effects of suspension parameters on spring fatigue life were analyzed because this process can improve spring fatigue life from a distinct perspective. A quarter car model simulation was performed to obtain the force time histories for fatigue life prediction where the suspension parameters were adjusted. Multiple input regression and interaction plots were conducted to identify the interaction between these parameters. A full factorial experiment was performed to determine the optimal suspension settings that would maximize the spring fatigue life. For the regression, a high R 2 value of 0.9078 was obtained, indicating good fitting. The established regression showed normality and homoscedasticity for consistent prediction outcome. Reducing the spring stiffness and sprung mass while enhancing the damping coefficient is therefore suggested to enhance fatigue life.
doi_str_mv 10.1051/meca/2019062
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439038995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439038995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-546969655f53549c1cacc9ce722c260b1c2aed612ca5dd77314d1a9e4b48c9063</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhoMoWGrvfICAt67NOc2lVKtiQfDUy5BmZ0tq92CyC-3bu0uLzMUMw8cM_4fQNSV3lEg6LcG7KSPUEMXO0IgxqTOtJTn_n7W-RJOUtoQQqowRQo2Qf4AWYhmqUG1w3bShdDucutRAlUJd4XRILZS4cdGVA5lwUUecmjjwhWvDpgO8CwXgLg2rHFLYVLguMOwbiKGEqr1CF4XbJZic-hh9LR4_58_Z8u3pZX6_zDwzqs2kUKYvKQvJpTCeeue98aAZ80yRNfXMQa4o807mudacipw6A2ItZr5Pzcfo5ni3ifVvB6m127qLVf_SMsEN4TNjZE_dHikf65QiFLYPU7p4sJTYwaQdTNqTyR7PjnjoRez_WRd_rNJcSzsjK0s-Fu-rb_5qV_wPS0N3Sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439038995</pqid></control><display><type>article</type><title>Determining optimal suspension system parameters for spring fatigue life using design of experiment</title><source>DOAJ Directory of Open Access Journals</source><creator>Kong, Yat Sheng ; Abdullah, Shahrum ; Schramm, Dieter ; Singh, Salvinder Singh Karam</creator><creatorcontrib>Kong, Yat Sheng ; Abdullah, Shahrum ; Schramm, Dieter ; Singh, Salvinder Singh Karam</creatorcontrib><description>This paper presents the optimization of spring fatigue life associated with suspension system parameters using the design of experiment approach. The effects of suspension parameters on spring fatigue life were analyzed because this process can improve spring fatigue life from a distinct perspective. A quarter car model simulation was performed to obtain the force time histories for fatigue life prediction where the suspension parameters were adjusted. Multiple input regression and interaction plots were conducted to identify the interaction between these parameters. A full factorial experiment was performed to determine the optimal suspension settings that would maximize the spring fatigue life. For the regression, a high R 2 value of 0.9078 was obtained, indicating good fitting. The established regression showed normality and homoscedasticity for consistent prediction outcome. Reducing the spring stiffness and sprung mass while enhancing the damping coefficient is therefore suggested to enhance fatigue life.</description><identifier>ISSN: 2257-7777</identifier><identifier>EISSN: 2257-7750</identifier><identifier>DOI: 10.1051/meca/2019062</identifier><language>eng</language><publisher>Villeurbanne: EDP Sciences</publisher><subject>Automobiles ; automotive suspension ; Computer simulation ; Damping ; design of experiment ; Design of experiments ; Design parameters ; Ductility ; Fatigue life ; finite element analysis ; Interaction parameters ; Life prediction ; multiple input regression ; Normality ; Optimization ; Optimization techniques ; Parameter identification ; Regression analysis ; Roads &amp; highways ; Simulation ; Stiffness ; Suspension systems</subject><ispartof>Mechanics &amp; industry : an international journal on mechanical sciences and engineering applications, 2019, Vol.20 (6), p.621</ispartof><rights>2019. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.mechanics-industry.org/articles/meca/full_html/2019/06/mi180235/mi180235.html .</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-546969655f53549c1cacc9ce722c260b1c2aed612ca5dd77314d1a9e4b48c9063</cites><orcidid>0000-0003-4201-266X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Kong, Yat Sheng</creatorcontrib><creatorcontrib>Abdullah, Shahrum</creatorcontrib><creatorcontrib>Schramm, Dieter</creatorcontrib><creatorcontrib>Singh, Salvinder Singh Karam</creatorcontrib><title>Determining optimal suspension system parameters for spring fatigue life using design of experiment</title><title>Mechanics &amp; industry : an international journal on mechanical sciences and engineering applications</title><description>This paper presents the optimization of spring fatigue life associated with suspension system parameters using the design of experiment approach. The effects of suspension parameters on spring fatigue life were analyzed because this process can improve spring fatigue life from a distinct perspective. A quarter car model simulation was performed to obtain the force time histories for fatigue life prediction where the suspension parameters were adjusted. Multiple input regression and interaction plots were conducted to identify the interaction between these parameters. A full factorial experiment was performed to determine the optimal suspension settings that would maximize the spring fatigue life. For the regression, a high R 2 value of 0.9078 was obtained, indicating good fitting. The established regression showed normality and homoscedasticity for consistent prediction outcome. Reducing the spring stiffness and sprung mass while enhancing the damping coefficient is therefore suggested to enhance fatigue life.</description><subject>Automobiles</subject><subject>automotive suspension</subject><subject>Computer simulation</subject><subject>Damping</subject><subject>design of experiment</subject><subject>Design of experiments</subject><subject>Design parameters</subject><subject>Ductility</subject><subject>Fatigue life</subject><subject>finite element analysis</subject><subject>Interaction parameters</subject><subject>Life prediction</subject><subject>multiple input regression</subject><subject>Normality</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Parameter identification</subject><subject>Regression analysis</subject><subject>Roads &amp; highways</subject><subject>Simulation</subject><subject>Stiffness</subject><subject>Suspension systems</subject><issn>2257-7777</issn><issn>2257-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kNtKAzEQhoMoWGrvfICAt67NOc2lVKtiQfDUy5BmZ0tq92CyC-3bu0uLzMUMw8cM_4fQNSV3lEg6LcG7KSPUEMXO0IgxqTOtJTn_n7W-RJOUtoQQqowRQo2Qf4AWYhmqUG1w3bShdDucutRAlUJd4XRILZS4cdGVA5lwUUecmjjwhWvDpgO8CwXgLg2rHFLYVLguMOwbiKGEqr1CF4XbJZic-hh9LR4_58_Z8u3pZX6_zDwzqs2kUKYvKQvJpTCeeue98aAZ80yRNfXMQa4o807mudacipw6A2ItZr5Pzcfo5ni3ifVvB6m127qLVf_SMsEN4TNjZE_dHikf65QiFLYPU7p4sJTYwaQdTNqTyR7PjnjoRez_WRd_rNJcSzsjK0s-Fu-rb_5qV_wPS0N3Sg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Kong, Yat Sheng</creator><creator>Abdullah, Shahrum</creator><creator>Schramm, Dieter</creator><creator>Singh, Salvinder Singh Karam</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-4201-266X</orcidid></search><sort><creationdate>2019</creationdate><title>Determining optimal suspension system parameters for spring fatigue life using design of experiment</title><author>Kong, Yat Sheng ; Abdullah, Shahrum ; Schramm, Dieter ; Singh, Salvinder Singh Karam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-546969655f53549c1cacc9ce722c260b1c2aed612ca5dd77314d1a9e4b48c9063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automobiles</topic><topic>automotive suspension</topic><topic>Computer simulation</topic><topic>Damping</topic><topic>design of experiment</topic><topic>Design of experiments</topic><topic>Design parameters</topic><topic>Ductility</topic><topic>Fatigue life</topic><topic>finite element analysis</topic><topic>Interaction parameters</topic><topic>Life prediction</topic><topic>multiple input regression</topic><topic>Normality</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Parameter identification</topic><topic>Regression analysis</topic><topic>Roads &amp; highways</topic><topic>Simulation</topic><topic>Stiffness</topic><topic>Suspension systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Yat Sheng</creatorcontrib><creatorcontrib>Abdullah, Shahrum</creatorcontrib><creatorcontrib>Schramm, Dieter</creatorcontrib><creatorcontrib>Singh, Salvinder Singh Karam</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Mechanics &amp; industry : an international journal on mechanical sciences and engineering applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Yat Sheng</au><au>Abdullah, Shahrum</au><au>Schramm, Dieter</au><au>Singh, Salvinder Singh Karam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining optimal suspension system parameters for spring fatigue life using design of experiment</atitle><jtitle>Mechanics &amp; industry : an international journal on mechanical sciences and engineering applications</jtitle><date>2019</date><risdate>2019</risdate><volume>20</volume><issue>6</issue><spage>621</spage><pages>621-</pages><issn>2257-7777</issn><eissn>2257-7750</eissn><abstract>This paper presents the optimization of spring fatigue life associated with suspension system parameters using the design of experiment approach. The effects of suspension parameters on spring fatigue life were analyzed because this process can improve spring fatigue life from a distinct perspective. A quarter car model simulation was performed to obtain the force time histories for fatigue life prediction where the suspension parameters were adjusted. Multiple input regression and interaction plots were conducted to identify the interaction between these parameters. A full factorial experiment was performed to determine the optimal suspension settings that would maximize the spring fatigue life. For the regression, a high R 2 value of 0.9078 was obtained, indicating good fitting. The established regression showed normality and homoscedasticity for consistent prediction outcome. Reducing the spring stiffness and sprung mass while enhancing the damping coefficient is therefore suggested to enhance fatigue life.</abstract><cop>Villeurbanne</cop><pub>EDP Sciences</pub><doi>10.1051/meca/2019062</doi><orcidid>https://orcid.org/0000-0003-4201-266X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2257-7777
ispartof Mechanics & industry : an international journal on mechanical sciences and engineering applications, 2019, Vol.20 (6), p.621
issn 2257-7777
2257-7750
language eng
recordid cdi_proquest_journals_2439038995
source DOAJ Directory of Open Access Journals
subjects Automobiles
automotive suspension
Computer simulation
Damping
design of experiment
Design of experiments
Design parameters
Ductility
Fatigue life
finite element analysis
Interaction parameters
Life prediction
multiple input regression
Normality
Optimization
Optimization techniques
Parameter identification
Regression analysis
Roads & highways
Simulation
Stiffness
Suspension systems
title Determining optimal suspension system parameters for spring fatigue life using design of experiment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20optimal%20suspension%20system%20parameters%20for%20spring%20fatigue%20life%20using%20design%20of%20experiment&rft.jtitle=Mechanics%20&%20industry%20:%20an%20international%20journal%20on%20mechanical%20sciences%20and%20engineering%20applications&rft.au=Kong,%20Yat%20Sheng&rft.date=2019&rft.volume=20&rft.issue=6&rft.spage=621&rft.pages=621-&rft.issn=2257-7777&rft.eissn=2257-7750&rft_id=info:doi/10.1051/meca/2019062&rft_dat=%3Cproquest_cross%3E2439038995%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-546969655f53549c1cacc9ce722c260b1c2aed612ca5dd77314d1a9e4b48c9063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2439038995&rft_id=info:pmid/&rfr_iscdi=true