Loading…
Electrically Controlled Spin Injection from Giant Rashba Spin-Orbit Conductor BiTeBr
Ferromagnetic materials are the widely used source of spin-polarized electrons in spintronic devices, which are controlled by external magnetic fields or spin-transfer torque methods. However, with increasing demand for smaller and faster spintronic components, utilization of spin-orbit phenomena pr...
Saved in:
Published in: | arXiv.org 2020-08 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ferromagnetic materials are the widely used source of spin-polarized electrons in spintronic devices, which are controlled by external magnetic fields or spin-transfer torque methods. However, with increasing demand for smaller and faster spintronic components, utilization of spin-orbit phenomena provides promising alternatives. New materials with unique spin textures are highly desirable since all-electric creation and control of spin polarization is expected, where the strength, as well as an arbitrary orientation of the polarization, can be defined without the use of a magnetic field. In this work, we use a novel spin-orbit crystal BiTeBr for this purpose. Owning to its giant Rashba spin splitting, bulk spin polarization is created at room temperature by an electric current. Integrating BiTeBr crystal into graphene-based spin valve devices, we demonstrate for the first time that it acts as a current-controlled spin injector, opening new avenues for future spintronic applications in integrated circuits. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2008.13764 |