Loading…
A study on methods for estimating the PDF and the CDF in the exponentiated gamma distribution
The exponentiated gamma distribution is a two parameters lifetime distribution with monotone and non-monotone failure rates. In this article, some estimation methods of the probability density function and the cumulative distribution function of the exponentiated gamma distribution such as uniformly...
Saved in:
Published in: | Communications in statistics. Simulation and computation 2020-08, Vol.49 (8), p.1999-2013 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-ed5363550d476888830695d3e17a21f7e39652c6097e5e2b97a24d4eeffced3e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-ed5363550d476888830695d3e17a21f7e39652c6097e5e2b97a24d4eeffced3e3 |
container_end_page | 2013 |
container_issue | 8 |
container_start_page | 1999 |
container_title | Communications in statistics. Simulation and computation |
container_volume | 49 |
creator | Rasekhi, Mahdi |
description | The exponentiated gamma distribution is a two parameters lifetime distribution with monotone and non-monotone failure rates. In this article, some estimation methods of the probability density function and the cumulative distribution function of the exponentiated gamma distribution such as uniformly minimum variance unbiased (UMVU), maximum likelihood (ML), least squares, weighted least squares and Minimum distance estimators are studied and their performances through numerical simulations are compared. By the mean integrated squared error (MISE), the UMVU and ML are approximately equivalent and more efficient than the others based on simulation studies when the sample size is more than 40. A real data set is analyzed for illustrative purposes. |
doi_str_mv | 10.1080/03610918.2018.1508707 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439239758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439239758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-ed5363550d476888830695d3e17a21f7e39652c6097e5e2b97a24d4eeffced3e3</originalsourceid><addsrcrecordid>eNp9kEFPwyAUx4nRxDn9CCYknqtQSktvLtOpyRI96NEQVl43lhUm0Oi-vXSbVznAP-T33oMfQteU3FIiyB1hJSU1Fbc5SRvlRFSkOkEjylmeFbSgp2g0MNkAnaOLENaEECYKMUKfExxir3fYWdxBXDkdcOs8hhBNp6KxSxxXgN8eZlhZvc_TlI3dR_jZOgs2GhVB46XqOoW1CdGbRR-Ns5forFWbAFfHc4w-Zo_v0-ds_vr0Mp3Ms4YxETPQnJWMc6KLqhRpMVLWXDOglcppWwGrS543Jakr4JAv6nRd6AKgbRtIGBujm0PfrXdffXq7XLve2zRS5gWrc1ZXXCSKH6jGuxA8tHLr0yf9TlIiB5Pyz6QcTMqjyVR3f6gzNqnp1LfzGy2j2m2cb72yjQmS_d_iF3oEeUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439239758</pqid></control><display><type>article</type><title>A study on methods for estimating the PDF and the CDF in the exponentiated gamma distribution</title><source>Taylor and Francis Science and Technology Collection</source><creator>Rasekhi, Mahdi</creator><creatorcontrib>Rasekhi, Mahdi</creatorcontrib><description>The exponentiated gamma distribution is a two parameters lifetime distribution with monotone and non-monotone failure rates. In this article, some estimation methods of the probability density function and the cumulative distribution function of the exponentiated gamma distribution such as uniformly minimum variance unbiased (UMVU), maximum likelihood (ML), least squares, weighted least squares and Minimum distance estimators are studied and their performances through numerical simulations are compared. By the mean integrated squared error (MISE), the UMVU and ML are approximately equivalent and more efficient than the others based on simulation studies when the sample size is more than 40. A real data set is analyzed for illustrative purposes.</description><identifier>ISSN: 0361-0918</identifier><identifier>EISSN: 1532-4141</identifier><identifier>DOI: 10.1080/03610918.2018.1508707</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis</publisher><subject>Computer simulation ; Distribution functions ; Exponentiated gamma distribution ; Failure rates ; Least squares ; Least squares estimator ; Maximum likelihood estimator ; Minimum distance estimator ; Probabilistic methods ; Probability density functions ; Probability distribution functions ; Statistical analysis ; Uniformly minimum variance unbiased estimator ; Weighted least squares estimator</subject><ispartof>Communications in statistics. Simulation and computation, 2020-08, Vol.49 (8), p.1999-2013</ispartof><rights>2018 Taylor & Francis Group, LLC 2018</rights><rights>2018 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-ed5363550d476888830695d3e17a21f7e39652c6097e5e2b97a24d4eeffced3e3</citedby><cites>FETCH-LOGICAL-c338t-ed5363550d476888830695d3e17a21f7e39652c6097e5e2b97a24d4eeffced3e3</cites><orcidid>0000-0003-4836-7461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rasekhi, Mahdi</creatorcontrib><title>A study on methods for estimating the PDF and the CDF in the exponentiated gamma distribution</title><title>Communications in statistics. Simulation and computation</title><description>The exponentiated gamma distribution is a two parameters lifetime distribution with monotone and non-monotone failure rates. In this article, some estimation methods of the probability density function and the cumulative distribution function of the exponentiated gamma distribution such as uniformly minimum variance unbiased (UMVU), maximum likelihood (ML), least squares, weighted least squares and Minimum distance estimators are studied and their performances through numerical simulations are compared. By the mean integrated squared error (MISE), the UMVU and ML are approximately equivalent and more efficient than the others based on simulation studies when the sample size is more than 40. A real data set is analyzed for illustrative purposes.</description><subject>Computer simulation</subject><subject>Distribution functions</subject><subject>Exponentiated gamma distribution</subject><subject>Failure rates</subject><subject>Least squares</subject><subject>Least squares estimator</subject><subject>Maximum likelihood estimator</subject><subject>Minimum distance estimator</subject><subject>Probabilistic methods</subject><subject>Probability density functions</subject><subject>Probability distribution functions</subject><subject>Statistical analysis</subject><subject>Uniformly minimum variance unbiased estimator</subject><subject>Weighted least squares estimator</subject><issn>0361-0918</issn><issn>1532-4141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPwyAUx4nRxDn9CCYknqtQSktvLtOpyRI96NEQVl43lhUm0Oi-vXSbVznAP-T33oMfQteU3FIiyB1hJSU1Fbc5SRvlRFSkOkEjylmeFbSgp2g0MNkAnaOLENaEECYKMUKfExxir3fYWdxBXDkdcOs8hhBNp6KxSxxXgN8eZlhZvc_TlI3dR_jZOgs2GhVB46XqOoW1CdGbRR-Ns5forFWbAFfHc4w-Zo_v0-ds_vr0Mp3Ms4YxETPQnJWMc6KLqhRpMVLWXDOglcppWwGrS543Jakr4JAv6nRd6AKgbRtIGBujm0PfrXdffXq7XLve2zRS5gWrc1ZXXCSKH6jGuxA8tHLr0yf9TlIiB5Pyz6QcTMqjyVR3f6gzNqnp1LfzGy2j2m2cb72yjQmS_d_iF3oEeUw</recordid><startdate>20200802</startdate><enddate>20200802</enddate><creator>Rasekhi, Mahdi</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4836-7461</orcidid></search><sort><creationdate>20200802</creationdate><title>A study on methods for estimating the PDF and the CDF in the exponentiated gamma distribution</title><author>Rasekhi, Mahdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-ed5363550d476888830695d3e17a21f7e39652c6097e5e2b97a24d4eeffced3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Distribution functions</topic><topic>Exponentiated gamma distribution</topic><topic>Failure rates</topic><topic>Least squares</topic><topic>Least squares estimator</topic><topic>Maximum likelihood estimator</topic><topic>Minimum distance estimator</topic><topic>Probabilistic methods</topic><topic>Probability density functions</topic><topic>Probability distribution functions</topic><topic>Statistical analysis</topic><topic>Uniformly minimum variance unbiased estimator</topic><topic>Weighted least squares estimator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rasekhi, Mahdi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in statistics. Simulation and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rasekhi, Mahdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A study on methods for estimating the PDF and the CDF in the exponentiated gamma distribution</atitle><jtitle>Communications in statistics. Simulation and computation</jtitle><date>2020-08-02</date><risdate>2020</risdate><volume>49</volume><issue>8</issue><spage>1999</spage><epage>2013</epage><pages>1999-2013</pages><issn>0361-0918</issn><eissn>1532-4141</eissn><abstract>The exponentiated gamma distribution is a two parameters lifetime distribution with monotone and non-monotone failure rates. In this article, some estimation methods of the probability density function and the cumulative distribution function of the exponentiated gamma distribution such as uniformly minimum variance unbiased (UMVU), maximum likelihood (ML), least squares, weighted least squares and Minimum distance estimators are studied and their performances through numerical simulations are compared. By the mean integrated squared error (MISE), the UMVU and ML are approximately equivalent and more efficient than the others based on simulation studies when the sample size is more than 40. A real data set is analyzed for illustrative purposes.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis</pub><doi>10.1080/03610918.2018.1508707</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4836-7461</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-0918 |
ispartof | Communications in statistics. Simulation and computation, 2020-08, Vol.49 (8), p.1999-2013 |
issn | 0361-0918 1532-4141 |
language | eng |
recordid | cdi_proquest_journals_2439239758 |
source | Taylor and Francis Science and Technology Collection |
subjects | Computer simulation Distribution functions Exponentiated gamma distribution Failure rates Least squares Least squares estimator Maximum likelihood estimator Minimum distance estimator Probabilistic methods Probability density functions Probability distribution functions Statistical analysis Uniformly minimum variance unbiased estimator Weighted least squares estimator |
title | A study on methods for estimating the PDF and the CDF in the exponentiated gamma distribution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A55%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20study%20on%20methods%20for%20estimating%20the%20PDF%20and%20the%20CDF%20in%20the%20exponentiated%20gamma%20distribution&rft.jtitle=Communications%20in%20statistics.%20Simulation%20and%20computation&rft.au=Rasekhi,%20Mahdi&rft.date=2020-08-02&rft.volume=49&rft.issue=8&rft.spage=1999&rft.epage=2013&rft.pages=1999-2013&rft.issn=0361-0918&rft.eissn=1532-4141&rft_id=info:doi/10.1080/03610918.2018.1508707&rft_dat=%3Cproquest_cross%3E2439239758%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-ed5363550d476888830695d3e17a21f7e39652c6097e5e2b97a24d4eeffced3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2439239758&rft_id=info:pmid/&rfr_iscdi=true |