Loading…

Phase Transformations in Nd–Fe–B-Based Alloys under High Pressure Torsion at Different Temperatures

In this work, we studied the behavior of the Nd–Dy–Fe–Co–Cu–B alloy for permanent magnets under high pressure torsion (HPT). In the initial state of the studied alloy, it mainly contained the crystalline phase τ 1 (Nd, Dy) 2 (Fe, Co, Cu) 14 B. After HPT at room temperature ( T HPT = 30°C), a mixture...

Full description

Saved in:
Bibliographic Details
Published in:JETP letters 2020-07, Vol.112 (1), p.37-44
Main Authors: Straumal, B. B., Mazilkin, A. A., Protasova, S. G., Kilmametov, A. R., Druzhinin, A. V., Baretzky, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-1d575127ed482807c0ec75a8bfbae2659278bd6f4b32686f6790ed3c5921c4ba3
cites cdi_FETCH-LOGICAL-c316t-1d575127ed482807c0ec75a8bfbae2659278bd6f4b32686f6790ed3c5921c4ba3
container_end_page 44
container_issue 1
container_start_page 37
container_title JETP letters
container_volume 112
creator Straumal, B. B.
Mazilkin, A. A.
Protasova, S. G.
Kilmametov, A. R.
Druzhinin, A. V.
Baretzky, B.
description In this work, we studied the behavior of the Nd–Dy–Fe–Co–Cu–B alloy for permanent magnets under high pressure torsion (HPT). In the initial state of the studied alloy, it mainly contained the crystalline phase τ 1 (Nd, Dy) 2 (Fe, Co, Cu) 14 B. After HPT at room temperature ( T HPT = 30°C), a mixture of an amorphous phase with nanocrystalline inclusions of the τ 1 phase is observed in the alloy. In the equilibrium phase diagram, this state is equivalent to a mixture of the τ 1 phase with the melt at the temperature T eff = ∼1100°C. The thus determined T eff value is called the effective temperature. When the T HPT temperature of the HPT treatment increases to 300 and 400°C, the amorphous phase disappears, and the Fe 2 B and γ-Fe phases appear instead. In the equilibrium phase diagram, this state is equivalent to a mixture of phases τ 1 + Fe 2 B + γ-Fe, which is observed in the temperature range from ∼950 to ∼1050°C. We explain this phenomenon by the fact that with an increase in the HPT temperature T HPT , the rate of formation of defects during deformation remains constant, but the rate of their thermal relaxation (annihilation) increases. This is equivalent to decrease in the effective temperature T eff in the equilibrium phase diagram. The previously predicted decrease in T eff with an increase in T HPT is observed for the first time.
doi_str_mv 10.1134/S0021364020130020
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439344660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439344660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1d575127ed482807c0ec75a8bfbae2659278bd6f4b32686f6790ed3c5921c4ba3</originalsourceid><addsrcrecordid>eNp1kM9Kw0AQhxdRsFYfwNuC5-j-y25ybKu1QtGC9Rw2yWyb0iZ1Njn05jv4hj6JWyJ4EC8zA7_vm4Eh5JqzW86luntlTHCpFROMyzCzEzLgLGWRVok5JYNjHB3zc3Lh_YYxzhNpBmS1WFsPdIm29q7BnW2rpva0qulz-fXxOYVQxtE4MCUdbbfNwdOuLgHprFqt6QLB-w6D36APIrUtva-cA4S6pUvY7QFtGwB_Sc6c3Xq4-ulD8jZ9WE5m0fzl8WkymkeF5LqNeBmbmAsDpUpEwkzBoDCxTXKXWxA6ToVJ8lI7lUuhE-20SRmUsggBL1Ru5ZDc9Hv32Lx34Nts03RYh5OZUDKVSmnNAsV7qsDGewSX7bHaWTxknGXHf2Z__hkc0Ts-sPUK8Hfz_9I3T1x4Yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439344660</pqid></control><display><type>article</type><title>Phase Transformations in Nd–Fe–B-Based Alloys under High Pressure Torsion at Different Temperatures</title><source>Springer Nature</source><creator>Straumal, B. B. ; Mazilkin, A. A. ; Protasova, S. G. ; Kilmametov, A. R. ; Druzhinin, A. V. ; Baretzky, B.</creator><creatorcontrib>Straumal, B. B. ; Mazilkin, A. A. ; Protasova, S. G. ; Kilmametov, A. R. ; Druzhinin, A. V. ; Baretzky, B.</creatorcontrib><description>In this work, we studied the behavior of the Nd–Dy–Fe–Co–Cu–B alloy for permanent magnets under high pressure torsion (HPT). In the initial state of the studied alloy, it mainly contained the crystalline phase τ 1 (Nd, Dy) 2 (Fe, Co, Cu) 14 B. After HPT at room temperature ( T HPT = 30°C), a mixture of an amorphous phase with nanocrystalline inclusions of the τ 1 phase is observed in the alloy. In the equilibrium phase diagram, this state is equivalent to a mixture of the τ 1 phase with the melt at the temperature T eff = ∼1100°C. The thus determined T eff value is called the effective temperature. When the T HPT temperature of the HPT treatment increases to 300 and 400°C, the amorphous phase disappears, and the Fe 2 B and γ-Fe phases appear instead. In the equilibrium phase diagram, this state is equivalent to a mixture of phases τ 1 + Fe 2 B + γ-Fe, which is observed in the temperature range from ∼950 to ∼1050°C. We explain this phenomenon by the fact that with an increase in the HPT temperature T HPT , the rate of formation of defects during deformation remains constant, but the rate of their thermal relaxation (annihilation) increases. This is equivalent to decrease in the effective temperature T eff in the equilibrium phase diagram. The previously predicted decrease in T eff with an increase in T HPT is observed for the first time.</description><identifier>ISSN: 0021-3640</identifier><identifier>EISSN: 1090-6487</identifier><identifier>DOI: 10.1134/S0021364020130020</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Alloys ; Atomic ; Biological and Medical Physics ; Biophysics ; Cobalt ; Condensed Matter ; Crystal defects ; Equivalence ; Inclusions ; Iron ; Molecular ; Optical and Plasma Physics ; Particle and Nuclear Physics ; Permanent magnets ; Phase diagrams ; Phase transitions ; Physics ; Physics and Astronomy ; Quantum Information Technology ; Room temperature ; Solid State Physics ; Spintronics ; Temperature ; Thermal relaxation</subject><ispartof>JETP letters, 2020-07, Vol.112 (1), p.37-44</ispartof><rights>Pleiades Publishing, Inc. 2020</rights><rights>Pleiades Publishing, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1d575127ed482807c0ec75a8bfbae2659278bd6f4b32686f6790ed3c5921c4ba3</citedby><cites>FETCH-LOGICAL-c316t-1d575127ed482807c0ec75a8bfbae2659278bd6f4b32686f6790ed3c5921c4ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Straumal, B. B.</creatorcontrib><creatorcontrib>Mazilkin, A. A.</creatorcontrib><creatorcontrib>Protasova, S. G.</creatorcontrib><creatorcontrib>Kilmametov, A. R.</creatorcontrib><creatorcontrib>Druzhinin, A. V.</creatorcontrib><creatorcontrib>Baretzky, B.</creatorcontrib><title>Phase Transformations in Nd–Fe–B-Based Alloys under High Pressure Torsion at Different Temperatures</title><title>JETP letters</title><addtitle>Jetp Lett</addtitle><description>In this work, we studied the behavior of the Nd–Dy–Fe–Co–Cu–B alloy for permanent magnets under high pressure torsion (HPT). In the initial state of the studied alloy, it mainly contained the crystalline phase τ 1 (Nd, Dy) 2 (Fe, Co, Cu) 14 B. After HPT at room temperature ( T HPT = 30°C), a mixture of an amorphous phase with nanocrystalline inclusions of the τ 1 phase is observed in the alloy. In the equilibrium phase diagram, this state is equivalent to a mixture of the τ 1 phase with the melt at the temperature T eff = ∼1100°C. The thus determined T eff value is called the effective temperature. When the T HPT temperature of the HPT treatment increases to 300 and 400°C, the amorphous phase disappears, and the Fe 2 B and γ-Fe phases appear instead. In the equilibrium phase diagram, this state is equivalent to a mixture of phases τ 1 + Fe 2 B + γ-Fe, which is observed in the temperature range from ∼950 to ∼1050°C. We explain this phenomenon by the fact that with an increase in the HPT temperature T HPT , the rate of formation of defects during deformation remains constant, but the rate of their thermal relaxation (annihilation) increases. This is equivalent to decrease in the effective temperature T eff in the equilibrium phase diagram. The previously predicted decrease in T eff with an increase in T HPT is observed for the first time.</description><subject>Alloys</subject><subject>Atomic</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Cobalt</subject><subject>Condensed Matter</subject><subject>Crystal defects</subject><subject>Equivalence</subject><subject>Inclusions</subject><subject>Iron</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Particle and Nuclear Physics</subject><subject>Permanent magnets</subject><subject>Phase diagrams</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Information Technology</subject><subject>Room temperature</subject><subject>Solid State Physics</subject><subject>Spintronics</subject><subject>Temperature</subject><subject>Thermal relaxation</subject><issn>0021-3640</issn><issn>1090-6487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9Kw0AQhxdRsFYfwNuC5-j-y25ybKu1QtGC9Rw2yWyb0iZ1Njn05jv4hj6JWyJ4EC8zA7_vm4Eh5JqzW86luntlTHCpFROMyzCzEzLgLGWRVok5JYNjHB3zc3Lh_YYxzhNpBmS1WFsPdIm29q7BnW2rpva0qulz-fXxOYVQxtE4MCUdbbfNwdOuLgHprFqt6QLB-w6D36APIrUtva-cA4S6pUvY7QFtGwB_Sc6c3Xq4-ulD8jZ9WE5m0fzl8WkymkeF5LqNeBmbmAsDpUpEwkzBoDCxTXKXWxA6ToVJ8lI7lUuhE-20SRmUsggBL1Ru5ZDc9Hv32Lx34Nts03RYh5OZUDKVSmnNAsV7qsDGewSX7bHaWTxknGXHf2Z__hkc0Ts-sPUK8Hfz_9I3T1x4Yw</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Straumal, B. B.</creator><creator>Mazilkin, A. A.</creator><creator>Protasova, S. G.</creator><creator>Kilmametov, A. R.</creator><creator>Druzhinin, A. V.</creator><creator>Baretzky, B.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200701</creationdate><title>Phase Transformations in Nd–Fe–B-Based Alloys under High Pressure Torsion at Different Temperatures</title><author>Straumal, B. B. ; Mazilkin, A. A. ; Protasova, S. G. ; Kilmametov, A. R. ; Druzhinin, A. V. ; Baretzky, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1d575127ed482807c0ec75a8bfbae2659278bd6f4b32686f6790ed3c5921c4ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloys</topic><topic>Atomic</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Cobalt</topic><topic>Condensed Matter</topic><topic>Crystal defects</topic><topic>Equivalence</topic><topic>Inclusions</topic><topic>Iron</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Particle and Nuclear Physics</topic><topic>Permanent magnets</topic><topic>Phase diagrams</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Information Technology</topic><topic>Room temperature</topic><topic>Solid State Physics</topic><topic>Spintronics</topic><topic>Temperature</topic><topic>Thermal relaxation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Straumal, B. B.</creatorcontrib><creatorcontrib>Mazilkin, A. A.</creatorcontrib><creatorcontrib>Protasova, S. G.</creatorcontrib><creatorcontrib>Kilmametov, A. R.</creatorcontrib><creatorcontrib>Druzhinin, A. V.</creatorcontrib><creatorcontrib>Baretzky, B.</creatorcontrib><collection>CrossRef</collection><jtitle>JETP letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Straumal, B. B.</au><au>Mazilkin, A. A.</au><au>Protasova, S. G.</au><au>Kilmametov, A. R.</au><au>Druzhinin, A. V.</au><au>Baretzky, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Transformations in Nd–Fe–B-Based Alloys under High Pressure Torsion at Different Temperatures</atitle><jtitle>JETP letters</jtitle><stitle>Jetp Lett</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>112</volume><issue>1</issue><spage>37</spage><epage>44</epage><pages>37-44</pages><issn>0021-3640</issn><eissn>1090-6487</eissn><abstract>In this work, we studied the behavior of the Nd–Dy–Fe–Co–Cu–B alloy for permanent magnets under high pressure torsion (HPT). In the initial state of the studied alloy, it mainly contained the crystalline phase τ 1 (Nd, Dy) 2 (Fe, Co, Cu) 14 B. After HPT at room temperature ( T HPT = 30°C), a mixture of an amorphous phase with nanocrystalline inclusions of the τ 1 phase is observed in the alloy. In the equilibrium phase diagram, this state is equivalent to a mixture of the τ 1 phase with the melt at the temperature T eff = ∼1100°C. The thus determined T eff value is called the effective temperature. When the T HPT temperature of the HPT treatment increases to 300 and 400°C, the amorphous phase disappears, and the Fe 2 B and γ-Fe phases appear instead. In the equilibrium phase diagram, this state is equivalent to a mixture of phases τ 1 + Fe 2 B + γ-Fe, which is observed in the temperature range from ∼950 to ∼1050°C. We explain this phenomenon by the fact that with an increase in the HPT temperature T HPT , the rate of formation of defects during deformation remains constant, but the rate of their thermal relaxation (annihilation) increases. This is equivalent to decrease in the effective temperature T eff in the equilibrium phase diagram. The previously predicted decrease in T eff with an increase in T HPT is observed for the first time.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021364020130020</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-3640
ispartof JETP letters, 2020-07, Vol.112 (1), p.37-44
issn 0021-3640
1090-6487
language eng
recordid cdi_proquest_journals_2439344660
source Springer Nature
subjects Alloys
Atomic
Biological and Medical Physics
Biophysics
Cobalt
Condensed Matter
Crystal defects
Equivalence
Inclusions
Iron
Molecular
Optical and Plasma Physics
Particle and Nuclear Physics
Permanent magnets
Phase diagrams
Phase transitions
Physics
Physics and Astronomy
Quantum Information Technology
Room temperature
Solid State Physics
Spintronics
Temperature
Thermal relaxation
title Phase Transformations in Nd–Fe–B-Based Alloys under High Pressure Torsion at Different Temperatures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A45%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Transformations%20in%20Nd%E2%80%93Fe%E2%80%93B-Based%20Alloys%20under%20High%20Pressure%20Torsion%20at%20Different%20Temperatures&rft.jtitle=JETP%20letters&rft.au=Straumal,%20B.%20B.&rft.date=2020-07-01&rft.volume=112&rft.issue=1&rft.spage=37&rft.epage=44&rft.pages=37-44&rft.issn=0021-3640&rft.eissn=1090-6487&rft_id=info:doi/10.1134/S0021364020130020&rft_dat=%3Cproquest_cross%3E2439344660%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-1d575127ed482807c0ec75a8bfbae2659278bd6f4b32686f6790ed3c5921c4ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2439344660&rft_id=info:pmid/&rfr_iscdi=true