Loading…
Rainbow cycles vs. rainbow paths
An edge-colored graph \(F\) is {\it rainbow} if each edge of \(F\) has a unique color. The {\it rainbow Turán number} \(\mathrm{ex}^*(n,F)\) of a graph \(F\) is the maximum possible number of edges in a properly edge-colored \(n\)-vertex graph with no rainbow copy of \(F\). The study of rainbow Turá...
Saved in:
Published in: | arXiv.org 2020-08 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Halfpap, Anastasia Palmer, Cory |
description | An edge-colored graph \(F\) is {\it rainbow} if each edge of \(F\) has a unique color. The {\it rainbow Turán number} \(\mathrm{ex}^*(n,F)\) of a graph \(F\) is the maximum possible number of edges in a properly edge-colored \(n\)-vertex graph with no rainbow copy of \(F\). The study of rainbow Turán numbers was introduced by Keevash, Mubayi, Sudakov, and Verstra\"ete. Johnson and Rombach introduced the following rainbow-version of generalized Turán problems: for fixed graphs \(H\) and \(F\), let \(\mathrm{ex}^*(n,H,F)\) denote the maximum number of rainbow copies of \(H\) in an \(n\)-vertex properly edge-colored graph with no rainbow copy of \(F\). In this paper we investigate the case \(\mathrm{ex}^*(n,C_\ell,P_\ell)\) and give a general upper bound as well as exact results for \(\ell = 3,4,5\). Along the way we establish a new best upper bound on \(\mathrm{ex}^*(n,P_5)\). Our main motivation comes from an attempt to improve bounds on \(\mathrm{ex}^*(n,P_\ell)\), which has been the subject of several recent manuscripts. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2439508085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439508085</sourcerecordid><originalsourceid>FETCH-proquest_journals_24395080853</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQCErMzEvKL1dIrkzOSS1WKCvWUyiCChUklmQU8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGJsaWpgYWBhakxcaoA6Dss-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439508085</pqid></control><display><type>article</type><title>Rainbow cycles vs. rainbow paths</title><source>Publicly Available Content Database</source><creator>Halfpap, Anastasia ; Palmer, Cory</creator><creatorcontrib>Halfpap, Anastasia ; Palmer, Cory</creatorcontrib><description>An edge-colored graph \(F\) is {\it rainbow} if each edge of \(F\) has a unique color. The {\it rainbow Turán number} \(\mathrm{ex}^*(n,F)\) of a graph \(F\) is the maximum possible number of edges in a properly edge-colored \(n\)-vertex graph with no rainbow copy of \(F\). The study of rainbow Turán numbers was introduced by Keevash, Mubayi, Sudakov, and Verstra\"ete. Johnson and Rombach introduced the following rainbow-version of generalized Turán problems: for fixed graphs \(H\) and \(F\), let \(\mathrm{ex}^*(n,H,F)\) denote the maximum number of rainbow copies of \(H\) in an \(n\)-vertex properly edge-colored graph with no rainbow copy of \(F\). In this paper we investigate the case \(\mathrm{ex}^*(n,C_\ell,P_\ell)\) and give a general upper bound as well as exact results for \(\ell = 3,4,5\). Along the way we establish a new best upper bound on \(\mathrm{ex}^*(n,P_5)\). Our main motivation comes from an attempt to improve bounds on \(\mathrm{ex}^*(n,P_\ell)\), which has been the subject of several recent manuscripts.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Graph coloring ; Graph theory ; Upper bounds</subject><ispartof>arXiv.org, 2020-08</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2439508085?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Halfpap, Anastasia</creatorcontrib><creatorcontrib>Palmer, Cory</creatorcontrib><title>Rainbow cycles vs. rainbow paths</title><title>arXiv.org</title><description>An edge-colored graph \(F\) is {\it rainbow} if each edge of \(F\) has a unique color. The {\it rainbow Turán number} \(\mathrm{ex}^*(n,F)\) of a graph \(F\) is the maximum possible number of edges in a properly edge-colored \(n\)-vertex graph with no rainbow copy of \(F\). The study of rainbow Turán numbers was introduced by Keevash, Mubayi, Sudakov, and Verstra\"ete. Johnson and Rombach introduced the following rainbow-version of generalized Turán problems: for fixed graphs \(H\) and \(F\), let \(\mathrm{ex}^*(n,H,F)\) denote the maximum number of rainbow copies of \(H\) in an \(n\)-vertex properly edge-colored graph with no rainbow copy of \(F\). In this paper we investigate the case \(\mathrm{ex}^*(n,C_\ell,P_\ell)\) and give a general upper bound as well as exact results for \(\ell = 3,4,5\). Along the way we establish a new best upper bound on \(\mathrm{ex}^*(n,P_5)\). Our main motivation comes from an attempt to improve bounds on \(\mathrm{ex}^*(n,P_\ell)\), which has been the subject of several recent manuscripts.</description><subject>Graph coloring</subject><subject>Graph theory</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQCErMzEvKL1dIrkzOSS1WKCvWUyiCChUklmQU8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGJsaWpgYWBhakxcaoA6Dss-w</recordid><startdate>20200831</startdate><enddate>20200831</enddate><creator>Halfpap, Anastasia</creator><creator>Palmer, Cory</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200831</creationdate><title>Rainbow cycles vs. rainbow paths</title><author>Halfpap, Anastasia ; Palmer, Cory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24395080853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Graph coloring</topic><topic>Graph theory</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Halfpap, Anastasia</creatorcontrib><creatorcontrib>Palmer, Cory</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halfpap, Anastasia</au><au>Palmer, Cory</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Rainbow cycles vs. rainbow paths</atitle><jtitle>arXiv.org</jtitle><date>2020-08-31</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>An edge-colored graph \(F\) is {\it rainbow} if each edge of \(F\) has a unique color. The {\it rainbow Turán number} \(\mathrm{ex}^*(n,F)\) of a graph \(F\) is the maximum possible number of edges in a properly edge-colored \(n\)-vertex graph with no rainbow copy of \(F\). The study of rainbow Turán numbers was introduced by Keevash, Mubayi, Sudakov, and Verstra\"ete. Johnson and Rombach introduced the following rainbow-version of generalized Turán problems: for fixed graphs \(H\) and \(F\), let \(\mathrm{ex}^*(n,H,F)\) denote the maximum number of rainbow copies of \(H\) in an \(n\)-vertex properly edge-colored graph with no rainbow copy of \(F\). In this paper we investigate the case \(\mathrm{ex}^*(n,C_\ell,P_\ell)\) and give a general upper bound as well as exact results for \(\ell = 3,4,5\). Along the way we establish a new best upper bound on \(\mathrm{ex}^*(n,P_5)\). Our main motivation comes from an attempt to improve bounds on \(\mathrm{ex}^*(n,P_\ell)\), which has been the subject of several recent manuscripts.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2439508085 |
source | Publicly Available Content Database |
subjects | Graph coloring Graph theory Upper bounds |
title | Rainbow cycles vs. rainbow paths |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Rainbow%20cycles%20vs.%20rainbow%20paths&rft.jtitle=arXiv.org&rft.au=Halfpap,%20Anastasia&rft.date=2020-08-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2439508085%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24395080853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2439508085&rft_id=info:pmid/&rfr_iscdi=true |