Loading…

Learning Causal Effect Using Machine Learning with Application to China’s Typhoon

Matching is a routinely used technique to balance covariates and thereby alleviate confounding bias in causal inference with observational data. Most of the matching literatures involve the estimating of propensity score with parametric model, which heavily depends on the model specification. In thi...

Full description

Saved in:
Bibliographic Details
Published in:Acta Mathematicae Applicatae Sinica 2020-07, Vol.36 (3), p.702-713
Main Authors: Wu, Peng, Hu, Qi-rui, Tong, Xing-wei, Wu, Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-761186d5d5244046ebbed8355f5ebf10b701c06d630fee6934a62674cbe5b133
container_end_page 713
container_issue 3
container_start_page 702
container_title Acta Mathematicae Applicatae Sinica
container_volume 36
creator Wu, Peng
Hu, Qi-rui
Tong, Xing-wei
Wu, Min
description Matching is a routinely used technique to balance covariates and thereby alleviate confounding bias in causal inference with observational data. Most of the matching literatures involve the estimating of propensity score with parametric model, which heavily depends on the model specification. In this paper, we employ machine learning and matching techniques to learn the average causal effect. By comparing a variety of machine learning methods in terms of propensity score under extensive scenarios, we find that the ensemble methods, especially generalized random forests, perform favorably with others. We apply all the methods to the data of tropical storms that occurred on the mainland of China since 1949.
doi_str_mv 10.1007/s10255-020-0960-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439636823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439636823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-761186d5d5244046ebbed8355f5ebf10b701c06d630fee6934a62674cbe5b133</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsFYfwN2A69F7ZzI3ybKE-gMVF9b1MEkmbUpN4kyKdOdr-Ho-iSkRXbm6cPjOufAxdolwjQDxTUCQWguQICAlEHjEJkiYCJUqecwmgJSIlGJ1ys5C2ABgrCiesOeFs76pmxXP7C7YLZ9XlSt6_hIO2aMt1nXj-C_0XvdrPuu6bV3Yvm4b3rc8GxD79fEZ-HLfrdu2OWcnld0Gd_Fzp2x5O19m92LxdPeQzRaikJT0IibEhEpdahlFEJHLc1cmSutKu7xCyGPAAqgkBZVzlKrIkqQ4KnKnc1Rqyq7G2c63bzsXerNpd74ZPhoZqZQUJfJA4UgVvg3Bu8p0vn61fm8QzEGdGdWZQZ05qDM4dOTYCQPbrJz_W_6_9A3oLXED</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439636823</pqid></control><display><type>article</type><title>Learning Causal Effect Using Machine Learning with Application to China’s Typhoon</title><source>Springer Link</source><creator>Wu, Peng ; Hu, Qi-rui ; Tong, Xing-wei ; Wu, Min</creator><creatorcontrib>Wu, Peng ; Hu, Qi-rui ; Tong, Xing-wei ; Wu, Min</creatorcontrib><description>Matching is a routinely used technique to balance covariates and thereby alleviate confounding bias in causal inference with observational data. Most of the matching literatures involve the estimating of propensity score with parametric model, which heavily depends on the model specification. In this paper, we employ machine learning and matching techniques to learn the average causal effect. By comparing a variety of machine learning methods in terms of propensity score under extensive scenarios, we find that the ensemble methods, especially generalized random forests, perform favorably with others. We apply all the methods to the data of tropical storms that occurred on the mainland of China since 1949.</description><edition>English series</edition><identifier>ISSN: 0168-9673</identifier><identifier>EISSN: 1618-3932</identifier><identifier>DOI: 10.1007/s10255-020-0960-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Machine learning ; Matching ; Math Applications in Computer Science ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical ; Tropical storms</subject><ispartof>Acta Mathematicae Applicatae Sinica, 2020-07, Vol.36 (3), p.702-713</ispartof><rights>The Editorial Office of AMAS &amp; Springer-Verlag GmbH Germany 2020</rights><rights>The Editorial Office of AMAS &amp; Springer-Verlag GmbH Germany 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-761186d5d5244046ebbed8355f5ebf10b701c06d630fee6934a62674cbe5b133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Hu, Qi-rui</creatorcontrib><creatorcontrib>Tong, Xing-wei</creatorcontrib><creatorcontrib>Wu, Min</creatorcontrib><title>Learning Causal Effect Using Machine Learning with Application to China’s Typhoon</title><title>Acta Mathematicae Applicatae Sinica</title><addtitle>Acta Math. Appl. Sin. Engl. Ser</addtitle><description>Matching is a routinely used technique to balance covariates and thereby alleviate confounding bias in causal inference with observational data. Most of the matching literatures involve the estimating of propensity score with parametric model, which heavily depends on the model specification. In this paper, we employ machine learning and matching techniques to learn the average causal effect. By comparing a variety of machine learning methods in terms of propensity score under extensive scenarios, we find that the ensemble methods, especially generalized random forests, perform favorably with others. We apply all the methods to the data of tropical storms that occurred on the mainland of China since 1949.</description><subject>Applications of Mathematics</subject><subject>Machine learning</subject><subject>Matching</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><subject>Tropical storms</subject><issn>0168-9673</issn><issn>1618-3932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsFYfwN2A69F7ZzI3ybKE-gMVF9b1MEkmbUpN4kyKdOdr-Ho-iSkRXbm6cPjOufAxdolwjQDxTUCQWguQICAlEHjEJkiYCJUqecwmgJSIlGJ1ys5C2ABgrCiesOeFs76pmxXP7C7YLZ9XlSt6_hIO2aMt1nXj-C_0XvdrPuu6bV3Yvm4b3rc8GxD79fEZ-HLfrdu2OWcnld0Gd_Fzp2x5O19m92LxdPeQzRaikJT0IibEhEpdahlFEJHLc1cmSutKu7xCyGPAAqgkBZVzlKrIkqQ4KnKnc1Rqyq7G2c63bzsXerNpd74ZPhoZqZQUJfJA4UgVvg3Bu8p0vn61fm8QzEGdGdWZQZ05qDM4dOTYCQPbrJz_W_6_9A3oLXED</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Wu, Peng</creator><creator>Hu, Qi-rui</creator><creator>Tong, Xing-wei</creator><creator>Wu, Min</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200701</creationdate><title>Learning Causal Effect Using Machine Learning with Application to China’s Typhoon</title><author>Wu, Peng ; Hu, Qi-rui ; Tong, Xing-wei ; Wu, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-761186d5d5244046ebbed8355f5ebf10b701c06d630fee6934a62674cbe5b133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Machine learning</topic><topic>Matching</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><topic>Tropical storms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Hu, Qi-rui</creatorcontrib><creatorcontrib>Tong, Xing-wei</creatorcontrib><creatorcontrib>Wu, Min</creatorcontrib><collection>CrossRef</collection><jtitle>Acta Mathematicae Applicatae Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Peng</au><au>Hu, Qi-rui</au><au>Tong, Xing-wei</au><au>Wu, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Causal Effect Using Machine Learning with Application to China’s Typhoon</atitle><jtitle>Acta Mathematicae Applicatae Sinica</jtitle><stitle>Acta Math. Appl. Sin. Engl. Ser</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>36</volume><issue>3</issue><spage>702</spage><epage>713</epage><pages>702-713</pages><issn>0168-9673</issn><eissn>1618-3932</eissn><abstract>Matching is a routinely used technique to balance covariates and thereby alleviate confounding bias in causal inference with observational data. Most of the matching literatures involve the estimating of propensity score with parametric model, which heavily depends on the model specification. In this paper, we employ machine learning and matching techniques to learn the average causal effect. By comparing a variety of machine learning methods in terms of propensity score under extensive scenarios, we find that the ensemble methods, especially generalized random forests, perform favorably with others. We apply all the methods to the data of tropical storms that occurred on the mainland of China since 1949.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10255-020-0960-1</doi><tpages>12</tpages><edition>English series</edition></addata></record>
fulltext fulltext
identifier ISSN: 0168-9673
ispartof Acta Mathematicae Applicatae Sinica, 2020-07, Vol.36 (3), p.702-713
issn 0168-9673
1618-3932
language eng
recordid cdi_proquest_journals_2439636823
source Springer Link
subjects Applications of Mathematics
Machine learning
Matching
Math Applications in Computer Science
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Theoretical
Tropical storms
title Learning Causal Effect Using Machine Learning with Application to China’s Typhoon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Causal%20Effect%20Using%20Machine%20Learning%20with%20Application%20to%20China%E2%80%99s%20Typhoon&rft.jtitle=Acta%20Mathematicae%20Applicatae%20Sinica&rft.au=Wu,%20Peng&rft.date=2020-07-01&rft.volume=36&rft.issue=3&rft.spage=702&rft.epage=713&rft.pages=702-713&rft.issn=0168-9673&rft.eissn=1618-3932&rft_id=info:doi/10.1007/s10255-020-0960-1&rft_dat=%3Cproquest_cross%3E2439636823%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-761186d5d5244046ebbed8355f5ebf10b701c06d630fee6934a62674cbe5b133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2439636823&rft_id=info:pmid/&rfr_iscdi=true