Loading…

On the Noether and the Cayley–Bacharach Theorems with PD Multiplicities

In this paper we prove the Noether theorem with the multiplicities described by PD operators. Despite the known analog versions in this case the provided conditions are necessary and sufficient. We also prove the Cayley–Bacharach theorem with PD multiplicities. As far as we know this is the first ge...

Full description

Saved in:
Bibliographic Details
Published in:Journal of contemporary mathematical analysis 2020-05, Vol.55 (3), p.156-165
Main Authors: Hakopian, H., Vardanyan, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-e8ff3ca852b919158b652114879ce1787f7409c8eed2f8753cda13f05e3aead53
container_end_page 165
container_issue 3
container_start_page 156
container_title Journal of contemporary mathematical analysis
container_volume 55
creator Hakopian, H.
Vardanyan, N.
description In this paper we prove the Noether theorem with the multiplicities described by PD operators. Despite the known analog versions in this case the provided conditions are necessary and sufficient. We also prove the Cayley–Bacharach theorem with PD multiplicities. As far as we know this is the first generalization of this theorem for multiple intersections.
doi_str_mv 10.3103/S1068362320030048
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439637205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439637205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-e8ff3ca852b919158b652114879ce1787f7409c8eed2f8753cda13f05e3aead53</originalsourceid><addsrcrecordid>eNp1UEtOwzAQtRBIlMIB2FliHfA3sZdQKFQqFImyjlxnTFKlSbEToe64AzfkJLgUiQViM_NG7zPSQ-iUknNOCb94oiRVPGWcEcIJEWoPDajmItGCpvsRRzrZ8ofoKIQlITJiMUCTWYO7EvBDC3F5bJri-x6ZTQ2bz_ePK2NL4-PA8xJaD6uA36quxI_X-L6vu2pdV7bqKgjH6MCZOsDJzx6i5_HNfHSXTGe3k9HlNLEsVV0CyjlujZJsoammUi1SySgVKtMWaKYylwmirQIomFOZ5LYwlDsigRswheRDdLbLXfv2tYfQ5cu29018mTPBdcozRrYqulNZ34bgweVrX62M3-SU5NvG8j-NRQ_beULUNi_gf5P_N30BJFNsnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439637205</pqid></control><display><type>article</type><title>On the Noether and the Cayley–Bacharach Theorems with PD Multiplicities</title><source>Springer Link</source><creator>Hakopian, H. ; Vardanyan, N.</creator><creatorcontrib>Hakopian, H. ; Vardanyan, N.</creatorcontrib><description>In this paper we prove the Noether theorem with the multiplicities described by PD operators. Despite the known analog versions in this case the provided conditions are necessary and sufficient. We also prove the Cayley–Bacharach theorem with PD multiplicities. As far as we know this is the first generalization of this theorem for multiple intersections.</description><identifier>ISSN: 1068-3623</identifier><identifier>EISSN: 1934-9416</identifier><identifier>DOI: 10.3103/S1068362320030048</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Intersections ; Mathematics ; Mathematics and Statistics ; Theorems</subject><ispartof>Journal of contemporary mathematical analysis, 2020-05, Vol.55 (3), p.156-165</ispartof><rights>Allerton Press, Inc. 2020</rights><rights>Allerton Press, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-e8ff3ca852b919158b652114879ce1787f7409c8eed2f8753cda13f05e3aead53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hakopian, H.</creatorcontrib><creatorcontrib>Vardanyan, N.</creatorcontrib><title>On the Noether and the Cayley–Bacharach Theorems with PD Multiplicities</title><title>Journal of contemporary mathematical analysis</title><addtitle>J. Contemp. Mathemat. Anal</addtitle><description>In this paper we prove the Noether theorem with the multiplicities described by PD operators. Despite the known analog versions in this case the provided conditions are necessary and sufficient. We also prove the Cayley–Bacharach theorem with PD multiplicities. As far as we know this is the first generalization of this theorem for multiple intersections.</description><subject>Intersections</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theorems</subject><issn>1068-3623</issn><issn>1934-9416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UEtOwzAQtRBIlMIB2FliHfA3sZdQKFQqFImyjlxnTFKlSbEToe64AzfkJLgUiQViM_NG7zPSQ-iUknNOCb94oiRVPGWcEcIJEWoPDajmItGCpvsRRzrZ8ofoKIQlITJiMUCTWYO7EvBDC3F5bJri-x6ZTQ2bz_ePK2NL4-PA8xJaD6uA36quxI_X-L6vu2pdV7bqKgjH6MCZOsDJzx6i5_HNfHSXTGe3k9HlNLEsVV0CyjlujZJsoammUi1SySgVKtMWaKYylwmirQIomFOZ5LYwlDsigRswheRDdLbLXfv2tYfQ5cu29018mTPBdcozRrYqulNZ34bgweVrX62M3-SU5NvG8j-NRQ_beULUNi_gf5P_N30BJFNsnA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Hakopian, H.</creator><creator>Vardanyan, N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200501</creationdate><title>On the Noether and the Cayley–Bacharach Theorems with PD Multiplicities</title><author>Hakopian, H. ; Vardanyan, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-e8ff3ca852b919158b652114879ce1787f7409c8eed2f8753cda13f05e3aead53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Intersections</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hakopian, H.</creatorcontrib><creatorcontrib>Vardanyan, N.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of contemporary mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hakopian, H.</au><au>Vardanyan, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Noether and the Cayley–Bacharach Theorems with PD Multiplicities</atitle><jtitle>Journal of contemporary mathematical analysis</jtitle><stitle>J. Contemp. Mathemat. Anal</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>55</volume><issue>3</issue><spage>156</spage><epage>165</epage><pages>156-165</pages><issn>1068-3623</issn><eissn>1934-9416</eissn><abstract>In this paper we prove the Noether theorem with the multiplicities described by PD operators. Despite the known analog versions in this case the provided conditions are necessary and sufficient. We also prove the Cayley–Bacharach theorem with PD multiplicities. As far as we know this is the first generalization of this theorem for multiple intersections.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1068362320030048</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1068-3623
ispartof Journal of contemporary mathematical analysis, 2020-05, Vol.55 (3), p.156-165
issn 1068-3623
1934-9416
language eng
recordid cdi_proquest_journals_2439637205
source Springer Link
subjects Intersections
Mathematics
Mathematics and Statistics
Theorems
title On the Noether and the Cayley–Bacharach Theorems with PD Multiplicities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Noether%20and%20the%20Cayley%E2%80%93Bacharach%20Theorems%20with%20PD%20Multiplicities&rft.jtitle=Journal%20of%20contemporary%20mathematical%20analysis&rft.au=Hakopian,%20H.&rft.date=2020-05-01&rft.volume=55&rft.issue=3&rft.spage=156&rft.epage=165&rft.pages=156-165&rft.issn=1068-3623&rft.eissn=1934-9416&rft_id=info:doi/10.3103/S1068362320030048&rft_dat=%3Cproquest_cross%3E2439637205%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-e8ff3ca852b919158b652114879ce1787f7409c8eed2f8753cda13f05e3aead53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2439637205&rft_id=info:pmid/&rfr_iscdi=true