Loading…

Pressure statistics of gas nuclei in homogeneous isotropic turbulence with an application to cavitation inception

The behavior of the pressure along the trajectories of finite-sized nuclei in isotropic homogeneous turbulence is investigated using direct numerical simulations at Reλ = 150. The trajectories of nuclei of different sizes are computed by solving a modified Maxey–Riley equation under different buoyan...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2020-09, Vol.32 (9)
Main Authors: Bappy, Mehedi H., Carrica, Pablo M., Vela-Martín, Alberto, Freire, Livia S., Buscaglia, Gustavo C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-df8ec73ea42c1cabbe364f7936e953be43c700996dcc32c9b611ced66ae527303
cites cdi_FETCH-LOGICAL-c362t-df8ec73ea42c1cabbe364f7936e953be43c700996dcc32c9b611ced66ae527303
container_end_page
container_issue 9
container_start_page
container_title Physics of fluids (1994)
container_volume 32
creator Bappy, Mehedi H.
Carrica, Pablo M.
Vela-Martín, Alberto
Freire, Livia S.
Buscaglia, Gustavo C.
description The behavior of the pressure along the trajectories of finite-sized nuclei in isotropic homogeneous turbulence is investigated using direct numerical simulations at Reλ = 150. The trajectories of nuclei of different sizes are computed by solving a modified Maxey–Riley equation under different buoyancy conditions. Results show that larger nuclei are more attracted to the vortex cores and spend more time at low-pressure regions than smaller nuclei. The average frequency of pressure fluctuations toward negative values also increases with size. These effects level off as the Stokes number becomes greater than 1. Buoyancy, characterized by the terminal velocity w, counteracts the attraction force toward vortex cores while simultaneously imposing an average vertical drift between the nuclei and the fluid. Computational results indicate that weak vortices, associated with moderately low pressures, lose their ability to capture finite-sized nuclei if w ≥ u′. The attraction exerted by the strongest vortices on the largest of the considered nuclei, on the other hand, can only be overcome by buoyancy if w ≥ 8u′. The quantitative results of this study are shown to have a significant impact on modeling cavitation inception in water. For this purpose, the Rayleigh–Plesset equation is solved along the nuclei trajectories with realistic sizes and turbulence intensities. The simulations predict cavitation inception at mean pressures several kPa above vapor pressure.
doi_str_mv 10.1063/5.0019683
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439722108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439722108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-df8ec73ea42c1cabbe364f7936e953be43c700996dcc32c9b611ced66ae527303</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgCs7pwf8g4EmhM2nadDnK8BcIetBzSF9ft4yu6ZJ04n9vR4ceBE95gQ_fx_sScsnZjDMpbvMZY1zJuTgiE87mKimklMf7uWCJlIKfkrMQ1owxoVI5Ids3jyH0HmmIJtoQLQTqaro0gbY9NGipbenKbdwSW3R9oDa46F1ngcbel32DLSD9tHFFTUtN1zUWhiDX0ugomJ2N488OrNtP5-SkNk3Ai8M7JR8P9--Lp-Tl9fF5cfeSgJBpTKp6jlAINFkKHExZopBZXSghUeWixExAwZhSsgIQKahScg5YSWkwTwvBxJRcjbmdd9seQ9Rr1_t2WKnTTKgiTYd-BnU9KvAuBI-17rzdGP-lOdP7RnWuD40O9ma0AQ5X_eCd879Qd1X9H_6b_A0tyYc0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439722108</pqid></control><display><type>article</type><title>Pressure statistics of gas nuclei in homogeneous isotropic turbulence with an application to cavitation inception</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Bappy, Mehedi H. ; Carrica, Pablo M. ; Vela-Martín, Alberto ; Freire, Livia S. ; Buscaglia, Gustavo C.</creator><creatorcontrib>Bappy, Mehedi H. ; Carrica, Pablo M. ; Vela-Martín, Alberto ; Freire, Livia S. ; Buscaglia, Gustavo C.</creatorcontrib><description>The behavior of the pressure along the trajectories of finite-sized nuclei in isotropic homogeneous turbulence is investigated using direct numerical simulations at Reλ = 150. The trajectories of nuclei of different sizes are computed by solving a modified Maxey–Riley equation under different buoyancy conditions. Results show that larger nuclei are more attracted to the vortex cores and spend more time at low-pressure regions than smaller nuclei. The average frequency of pressure fluctuations toward negative values also increases with size. These effects level off as the Stokes number becomes greater than 1. Buoyancy, characterized by the terminal velocity w, counteracts the attraction force toward vortex cores while simultaneously imposing an average vertical drift between the nuclei and the fluid. Computational results indicate that weak vortices, associated with moderately low pressures, lose their ability to capture finite-sized nuclei if w ≥ u′. The attraction exerted by the strongest vortices on the largest of the considered nuclei, on the other hand, can only be overcome by buoyancy if w ≥ 8u′. The quantitative results of this study are shown to have a significant impact on modeling cavitation inception in water. For this purpose, the Rayleigh–Plesset equation is solved along the nuclei trajectories with realistic sizes and turbulence intensities. The simulations predict cavitation inception at mean pressures several kPa above vapor pressure.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0019683</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Attraction ; Buoyancy ; Cavitation ; Computational fluid dynamics ; Computer simulation ; Fluid dynamics ; Fluid flow ; Homogeneous turbulence ; Isotropic turbulence ; Low pressure ; Mathematical models ; Nuclei ; Physics ; Stokes number ; Terminal velocity ; Vapor pressure ; Vortices</subject><ispartof>Physics of fluids (1994), 2020-09, Vol.32 (9)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-df8ec73ea42c1cabbe364f7936e953be43c700996dcc32c9b611ced66ae527303</citedby><cites>FETCH-LOGICAL-c362t-df8ec73ea42c1cabbe364f7936e953be43c700996dcc32c9b611ced66ae527303</cites><orcidid>0000-0002-2252-9138 ; 0000-0003-4561-8683 ; 0000-0002-8992-3869 ; 0000-0002-8673-8465 ; 0000-0001-9567-403X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Bappy, Mehedi H.</creatorcontrib><creatorcontrib>Carrica, Pablo M.</creatorcontrib><creatorcontrib>Vela-Martín, Alberto</creatorcontrib><creatorcontrib>Freire, Livia S.</creatorcontrib><creatorcontrib>Buscaglia, Gustavo C.</creatorcontrib><title>Pressure statistics of gas nuclei in homogeneous isotropic turbulence with an application to cavitation inception</title><title>Physics of fluids (1994)</title><description>The behavior of the pressure along the trajectories of finite-sized nuclei in isotropic homogeneous turbulence is investigated using direct numerical simulations at Reλ = 150. The trajectories of nuclei of different sizes are computed by solving a modified Maxey–Riley equation under different buoyancy conditions. Results show that larger nuclei are more attracted to the vortex cores and spend more time at low-pressure regions than smaller nuclei. The average frequency of pressure fluctuations toward negative values also increases with size. These effects level off as the Stokes number becomes greater than 1. Buoyancy, characterized by the terminal velocity w, counteracts the attraction force toward vortex cores while simultaneously imposing an average vertical drift between the nuclei and the fluid. Computational results indicate that weak vortices, associated with moderately low pressures, lose their ability to capture finite-sized nuclei if w ≥ u′. The attraction exerted by the strongest vortices on the largest of the considered nuclei, on the other hand, can only be overcome by buoyancy if w ≥ 8u′. The quantitative results of this study are shown to have a significant impact on modeling cavitation inception in water. For this purpose, the Rayleigh–Plesset equation is solved along the nuclei trajectories with realistic sizes and turbulence intensities. The simulations predict cavitation inception at mean pressures several kPa above vapor pressure.</description><subject>Attraction</subject><subject>Buoyancy</subject><subject>Cavitation</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Homogeneous turbulence</subject><subject>Isotropic turbulence</subject><subject>Low pressure</subject><subject>Mathematical models</subject><subject>Nuclei</subject><subject>Physics</subject><subject>Stokes number</subject><subject>Terminal velocity</subject><subject>Vapor pressure</subject><subject>Vortices</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUB_AgCs7pwf8g4EmhM2nadDnK8BcIetBzSF9ft4yu6ZJ04n9vR4ceBE95gQ_fx_sScsnZjDMpbvMZY1zJuTgiE87mKimklMf7uWCJlIKfkrMQ1owxoVI5Ids3jyH0HmmIJtoQLQTqaro0gbY9NGipbenKbdwSW3R9oDa46F1ngcbel32DLSD9tHFFTUtN1zUWhiDX0ugomJ2N488OrNtP5-SkNk3Ai8M7JR8P9--Lp-Tl9fF5cfeSgJBpTKp6jlAINFkKHExZopBZXSghUeWixExAwZhSsgIQKahScg5YSWkwTwvBxJRcjbmdd9seQ9Rr1_t2WKnTTKgiTYd-BnU9KvAuBI-17rzdGP-lOdP7RnWuD40O9ma0AQ5X_eCd879Qd1X9H_6b_A0tyYc0</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Bappy, Mehedi H.</creator><creator>Carrica, Pablo M.</creator><creator>Vela-Martín, Alberto</creator><creator>Freire, Livia S.</creator><creator>Buscaglia, Gustavo C.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2252-9138</orcidid><orcidid>https://orcid.org/0000-0003-4561-8683</orcidid><orcidid>https://orcid.org/0000-0002-8992-3869</orcidid><orcidid>https://orcid.org/0000-0002-8673-8465</orcidid><orcidid>https://orcid.org/0000-0001-9567-403X</orcidid></search><sort><creationdate>20200901</creationdate><title>Pressure statistics of gas nuclei in homogeneous isotropic turbulence with an application to cavitation inception</title><author>Bappy, Mehedi H. ; Carrica, Pablo M. ; Vela-Martín, Alberto ; Freire, Livia S. ; Buscaglia, Gustavo C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-df8ec73ea42c1cabbe364f7936e953be43c700996dcc32c9b611ced66ae527303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Attraction</topic><topic>Buoyancy</topic><topic>Cavitation</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Homogeneous turbulence</topic><topic>Isotropic turbulence</topic><topic>Low pressure</topic><topic>Mathematical models</topic><topic>Nuclei</topic><topic>Physics</topic><topic>Stokes number</topic><topic>Terminal velocity</topic><topic>Vapor pressure</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bappy, Mehedi H.</creatorcontrib><creatorcontrib>Carrica, Pablo M.</creatorcontrib><creatorcontrib>Vela-Martín, Alberto</creatorcontrib><creatorcontrib>Freire, Livia S.</creatorcontrib><creatorcontrib>Buscaglia, Gustavo C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bappy, Mehedi H.</au><au>Carrica, Pablo M.</au><au>Vela-Martín, Alberto</au><au>Freire, Livia S.</au><au>Buscaglia, Gustavo C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pressure statistics of gas nuclei in homogeneous isotropic turbulence with an application to cavitation inception</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>32</volume><issue>9</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The behavior of the pressure along the trajectories of finite-sized nuclei in isotropic homogeneous turbulence is investigated using direct numerical simulations at Reλ = 150. The trajectories of nuclei of different sizes are computed by solving a modified Maxey–Riley equation under different buoyancy conditions. Results show that larger nuclei are more attracted to the vortex cores and spend more time at low-pressure regions than smaller nuclei. The average frequency of pressure fluctuations toward negative values also increases with size. These effects level off as the Stokes number becomes greater than 1. Buoyancy, characterized by the terminal velocity w, counteracts the attraction force toward vortex cores while simultaneously imposing an average vertical drift between the nuclei and the fluid. Computational results indicate that weak vortices, associated with moderately low pressures, lose their ability to capture finite-sized nuclei if w ≥ u′. The attraction exerted by the strongest vortices on the largest of the considered nuclei, on the other hand, can only be overcome by buoyancy if w ≥ 8u′. The quantitative results of this study are shown to have a significant impact on modeling cavitation inception in water. For this purpose, the Rayleigh–Plesset equation is solved along the nuclei trajectories with realistic sizes and turbulence intensities. The simulations predict cavitation inception at mean pressures several kPa above vapor pressure.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0019683</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2252-9138</orcidid><orcidid>https://orcid.org/0000-0003-4561-8683</orcidid><orcidid>https://orcid.org/0000-0002-8992-3869</orcidid><orcidid>https://orcid.org/0000-0002-8673-8465</orcidid><orcidid>https://orcid.org/0000-0001-9567-403X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2020-09, Vol.32 (9)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2439722108
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Attraction
Buoyancy
Cavitation
Computational fluid dynamics
Computer simulation
Fluid dynamics
Fluid flow
Homogeneous turbulence
Isotropic turbulence
Low pressure
Mathematical models
Nuclei
Physics
Stokes number
Terminal velocity
Vapor pressure
Vortices
title Pressure statistics of gas nuclei in homogeneous isotropic turbulence with an application to cavitation inception
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pressure%20statistics%20of%20gas%20nuclei%20in%20homogeneous%20isotropic%20turbulence%20with%20an%20application%20to%20cavitation%20inception&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Bappy,%20Mehedi%20H.&rft.date=2020-09-01&rft.volume=32&rft.issue=9&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0019683&rft_dat=%3Cproquest_cross%3E2439722108%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-df8ec73ea42c1cabbe364f7936e953be43c700996dcc32c9b611ced66ae527303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2439722108&rft_id=info:pmid/&rfr_iscdi=true