Loading…
Pressure statistics of gas nuclei in homogeneous isotropic turbulence with an application to cavitation inception
The behavior of the pressure along the trajectories of finite-sized nuclei in isotropic homogeneous turbulence is investigated using direct numerical simulations at Reλ = 150. The trajectories of nuclei of different sizes are computed by solving a modified Maxey–Riley equation under different buoyan...
Saved in:
Published in: | Physics of fluids (1994) 2020-09, Vol.32 (9) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c362t-df8ec73ea42c1cabbe364f7936e953be43c700996dcc32c9b611ced66ae527303 |
---|---|
cites | cdi_FETCH-LOGICAL-c362t-df8ec73ea42c1cabbe364f7936e953be43c700996dcc32c9b611ced66ae527303 |
container_end_page | |
container_issue | 9 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 32 |
creator | Bappy, Mehedi H. Carrica, Pablo M. Vela-Martín, Alberto Freire, Livia S. Buscaglia, Gustavo C. |
description | The behavior of the pressure along the trajectories of finite-sized nuclei in isotropic homogeneous turbulence is investigated using direct numerical simulations at Reλ = 150. The trajectories of nuclei of different sizes are computed by solving a modified Maxey–Riley equation under different buoyancy conditions. Results show that larger nuclei are more attracted to the vortex cores and spend more time at low-pressure regions than smaller nuclei. The average frequency of pressure fluctuations toward negative values also increases with size. These effects level off as the Stokes number becomes greater than 1. Buoyancy, characterized by the terminal velocity w, counteracts the attraction force toward vortex cores while simultaneously imposing an average vertical drift between the nuclei and the fluid. Computational results indicate that weak vortices, associated with moderately low pressures, lose their ability to capture finite-sized nuclei if w ≥ u′. The attraction exerted by the strongest vortices on the largest of the considered nuclei, on the other hand, can only be overcome by buoyancy if w ≥ 8u′. The quantitative results of this study are shown to have a significant impact on modeling cavitation inception in water. For this purpose, the Rayleigh–Plesset equation is solved along the nuclei trajectories with realistic sizes and turbulence intensities. The simulations predict cavitation inception at mean pressures several kPa above vapor pressure. |
doi_str_mv | 10.1063/5.0019683 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439722108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439722108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-df8ec73ea42c1cabbe364f7936e953be43c700996dcc32c9b611ced66ae527303</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgCs7pwf8g4EmhM2nadDnK8BcIetBzSF9ft4yu6ZJ04n9vR4ceBE95gQ_fx_sScsnZjDMpbvMZY1zJuTgiE87mKimklMf7uWCJlIKfkrMQ1owxoVI5Ids3jyH0HmmIJtoQLQTqaro0gbY9NGipbenKbdwSW3R9oDa46F1ngcbel32DLSD9tHFFTUtN1zUWhiDX0ugomJ2N488OrNtP5-SkNk3Ai8M7JR8P9--Lp-Tl9fF5cfeSgJBpTKp6jlAINFkKHExZopBZXSghUeWixExAwZhSsgIQKahScg5YSWkwTwvBxJRcjbmdd9seQ9Rr1_t2WKnTTKgiTYd-BnU9KvAuBI-17rzdGP-lOdP7RnWuD40O9ma0AQ5X_eCd879Qd1X9H_6b_A0tyYc0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439722108</pqid></control><display><type>article</type><title>Pressure statistics of gas nuclei in homogeneous isotropic turbulence with an application to cavitation inception</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Bappy, Mehedi H. ; Carrica, Pablo M. ; Vela-Martín, Alberto ; Freire, Livia S. ; Buscaglia, Gustavo C.</creator><creatorcontrib>Bappy, Mehedi H. ; Carrica, Pablo M. ; Vela-Martín, Alberto ; Freire, Livia S. ; Buscaglia, Gustavo C.</creatorcontrib><description>The behavior of the pressure along the trajectories of finite-sized nuclei in isotropic homogeneous turbulence is investigated using direct numerical simulations at Reλ = 150. The trajectories of nuclei of different sizes are computed by solving a modified Maxey–Riley equation under different buoyancy conditions. Results show that larger nuclei are more attracted to the vortex cores and spend more time at low-pressure regions than smaller nuclei. The average frequency of pressure fluctuations toward negative values also increases with size. These effects level off as the Stokes number becomes greater than 1. Buoyancy, characterized by the terminal velocity w, counteracts the attraction force toward vortex cores while simultaneously imposing an average vertical drift between the nuclei and the fluid. Computational results indicate that weak vortices, associated with moderately low pressures, lose their ability to capture finite-sized nuclei if w ≥ u′. The attraction exerted by the strongest vortices on the largest of the considered nuclei, on the other hand, can only be overcome by buoyancy if w ≥ 8u′. The quantitative results of this study are shown to have a significant impact on modeling cavitation inception in water. For this purpose, the Rayleigh–Plesset equation is solved along the nuclei trajectories with realistic sizes and turbulence intensities. The simulations predict cavitation inception at mean pressures several kPa above vapor pressure.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0019683</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Attraction ; Buoyancy ; Cavitation ; Computational fluid dynamics ; Computer simulation ; Fluid dynamics ; Fluid flow ; Homogeneous turbulence ; Isotropic turbulence ; Low pressure ; Mathematical models ; Nuclei ; Physics ; Stokes number ; Terminal velocity ; Vapor pressure ; Vortices</subject><ispartof>Physics of fluids (1994), 2020-09, Vol.32 (9)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-df8ec73ea42c1cabbe364f7936e953be43c700996dcc32c9b611ced66ae527303</citedby><cites>FETCH-LOGICAL-c362t-df8ec73ea42c1cabbe364f7936e953be43c700996dcc32c9b611ced66ae527303</cites><orcidid>0000-0002-2252-9138 ; 0000-0003-4561-8683 ; 0000-0002-8992-3869 ; 0000-0002-8673-8465 ; 0000-0001-9567-403X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Bappy, Mehedi H.</creatorcontrib><creatorcontrib>Carrica, Pablo M.</creatorcontrib><creatorcontrib>Vela-Martín, Alberto</creatorcontrib><creatorcontrib>Freire, Livia S.</creatorcontrib><creatorcontrib>Buscaglia, Gustavo C.</creatorcontrib><title>Pressure statistics of gas nuclei in homogeneous isotropic turbulence with an application to cavitation inception</title><title>Physics of fluids (1994)</title><description>The behavior of the pressure along the trajectories of finite-sized nuclei in isotropic homogeneous turbulence is investigated using direct numerical simulations at Reλ = 150. The trajectories of nuclei of different sizes are computed by solving a modified Maxey–Riley equation under different buoyancy conditions. Results show that larger nuclei are more attracted to the vortex cores and spend more time at low-pressure regions than smaller nuclei. The average frequency of pressure fluctuations toward negative values also increases with size. These effects level off as the Stokes number becomes greater than 1. Buoyancy, characterized by the terminal velocity w, counteracts the attraction force toward vortex cores while simultaneously imposing an average vertical drift between the nuclei and the fluid. Computational results indicate that weak vortices, associated with moderately low pressures, lose their ability to capture finite-sized nuclei if w ≥ u′. The attraction exerted by the strongest vortices on the largest of the considered nuclei, on the other hand, can only be overcome by buoyancy if w ≥ 8u′. The quantitative results of this study are shown to have a significant impact on modeling cavitation inception in water. For this purpose, the Rayleigh–Plesset equation is solved along the nuclei trajectories with realistic sizes and turbulence intensities. The simulations predict cavitation inception at mean pressures several kPa above vapor pressure.</description><subject>Attraction</subject><subject>Buoyancy</subject><subject>Cavitation</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Homogeneous turbulence</subject><subject>Isotropic turbulence</subject><subject>Low pressure</subject><subject>Mathematical models</subject><subject>Nuclei</subject><subject>Physics</subject><subject>Stokes number</subject><subject>Terminal velocity</subject><subject>Vapor pressure</subject><subject>Vortices</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUB_AgCs7pwf8g4EmhM2nadDnK8BcIetBzSF9ft4yu6ZJ04n9vR4ceBE95gQ_fx_sScsnZjDMpbvMZY1zJuTgiE87mKimklMf7uWCJlIKfkrMQ1owxoVI5Ids3jyH0HmmIJtoQLQTqaro0gbY9NGipbenKbdwSW3R9oDa46F1ngcbel32DLSD9tHFFTUtN1zUWhiDX0ugomJ2N488OrNtP5-SkNk3Ai8M7JR8P9--Lp-Tl9fF5cfeSgJBpTKp6jlAINFkKHExZopBZXSghUeWixExAwZhSsgIQKahScg5YSWkwTwvBxJRcjbmdd9seQ9Rr1_t2WKnTTKgiTYd-BnU9KvAuBI-17rzdGP-lOdP7RnWuD40O9ma0AQ5X_eCd879Qd1X9H_6b_A0tyYc0</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Bappy, Mehedi H.</creator><creator>Carrica, Pablo M.</creator><creator>Vela-Martín, Alberto</creator><creator>Freire, Livia S.</creator><creator>Buscaglia, Gustavo C.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2252-9138</orcidid><orcidid>https://orcid.org/0000-0003-4561-8683</orcidid><orcidid>https://orcid.org/0000-0002-8992-3869</orcidid><orcidid>https://orcid.org/0000-0002-8673-8465</orcidid><orcidid>https://orcid.org/0000-0001-9567-403X</orcidid></search><sort><creationdate>20200901</creationdate><title>Pressure statistics of gas nuclei in homogeneous isotropic turbulence with an application to cavitation inception</title><author>Bappy, Mehedi H. ; Carrica, Pablo M. ; Vela-Martín, Alberto ; Freire, Livia S. ; Buscaglia, Gustavo C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-df8ec73ea42c1cabbe364f7936e953be43c700996dcc32c9b611ced66ae527303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Attraction</topic><topic>Buoyancy</topic><topic>Cavitation</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Homogeneous turbulence</topic><topic>Isotropic turbulence</topic><topic>Low pressure</topic><topic>Mathematical models</topic><topic>Nuclei</topic><topic>Physics</topic><topic>Stokes number</topic><topic>Terminal velocity</topic><topic>Vapor pressure</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bappy, Mehedi H.</creatorcontrib><creatorcontrib>Carrica, Pablo M.</creatorcontrib><creatorcontrib>Vela-Martín, Alberto</creatorcontrib><creatorcontrib>Freire, Livia S.</creatorcontrib><creatorcontrib>Buscaglia, Gustavo C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bappy, Mehedi H.</au><au>Carrica, Pablo M.</au><au>Vela-Martín, Alberto</au><au>Freire, Livia S.</au><au>Buscaglia, Gustavo C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pressure statistics of gas nuclei in homogeneous isotropic turbulence with an application to cavitation inception</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>32</volume><issue>9</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The behavior of the pressure along the trajectories of finite-sized nuclei in isotropic homogeneous turbulence is investigated using direct numerical simulations at Reλ = 150. The trajectories of nuclei of different sizes are computed by solving a modified Maxey–Riley equation under different buoyancy conditions. Results show that larger nuclei are more attracted to the vortex cores and spend more time at low-pressure regions than smaller nuclei. The average frequency of pressure fluctuations toward negative values also increases with size. These effects level off as the Stokes number becomes greater than 1. Buoyancy, characterized by the terminal velocity w, counteracts the attraction force toward vortex cores while simultaneously imposing an average vertical drift between the nuclei and the fluid. Computational results indicate that weak vortices, associated with moderately low pressures, lose their ability to capture finite-sized nuclei if w ≥ u′. The attraction exerted by the strongest vortices on the largest of the considered nuclei, on the other hand, can only be overcome by buoyancy if w ≥ 8u′. The quantitative results of this study are shown to have a significant impact on modeling cavitation inception in water. For this purpose, the Rayleigh–Plesset equation is solved along the nuclei trajectories with realistic sizes and turbulence intensities. The simulations predict cavitation inception at mean pressures several kPa above vapor pressure.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0019683</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2252-9138</orcidid><orcidid>https://orcid.org/0000-0003-4561-8683</orcidid><orcidid>https://orcid.org/0000-0002-8992-3869</orcidid><orcidid>https://orcid.org/0000-0002-8673-8465</orcidid><orcidid>https://orcid.org/0000-0001-9567-403X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2020-09, Vol.32 (9) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_2439722108 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive |
subjects | Attraction Buoyancy Cavitation Computational fluid dynamics Computer simulation Fluid dynamics Fluid flow Homogeneous turbulence Isotropic turbulence Low pressure Mathematical models Nuclei Physics Stokes number Terminal velocity Vapor pressure Vortices |
title | Pressure statistics of gas nuclei in homogeneous isotropic turbulence with an application to cavitation inception |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pressure%20statistics%20of%20gas%20nuclei%20in%20homogeneous%20isotropic%20turbulence%20with%20an%20application%20to%20cavitation%20inception&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Bappy,%20Mehedi%20H.&rft.date=2020-09-01&rft.volume=32&rft.issue=9&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0019683&rft_dat=%3Cproquest_cross%3E2439722108%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-df8ec73ea42c1cabbe364f7936e953be43c700996dcc32c9b611ced66ae527303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2439722108&rft_id=info:pmid/&rfr_iscdi=true |