Loading…

On the differentiability of the minimal and maximal solution maps of elliptic quasi-variational inequalities

In this note, we prove that the minimal and maximal solution maps associated to elliptic quasi-variational inequalities of obstacle type are directionally differentiable with respect to the forcing term and for directions that are signed. Along the way, we show that the minimal and maximal solutions...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-10
Main Authors: Amal Alphonse, Hintermüller, Michael, Rautenberg, Carlos N
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Amal Alphonse
Hintermüller, Michael
Rautenberg, Carlos N
description In this note, we prove that the minimal and maximal solution maps associated to elliptic quasi-variational inequalities of obstacle type are directionally differentiable with respect to the forcing term and for directions that are signed. Along the way, we show that the minimal and maximal solutions can be seen as monotone limits of solutions of certain variational inequalities and that the aforementioned directional derivatives can also be characterised as the monotone limits of sequences of directional derivatives associated to variational inequalities. We conclude the paper with some examples and an application to thermoforming.
doi_str_mv 10.48550/arxiv.2009.01626
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2440216449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440216449</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-7e8412cc4e2051aa1ac46dac02244c151bcbe57223cf71b7d4336ed1c886f65f3</originalsourceid><addsrcrecordid>eNotjstqwzAQRUWh0JDmA7oTdG1XGj3sLEvoCwLZZB_GskQnyI9Ydkj_vk7a1R3uHA6XsScpcl0aI15wuNA5ByHWuZAW7B1bgFIyKzXAA1uldBRCgC3AGLVgcdfy8dvzmkLwg29HwooijT-8C7dHQy01GDm2NW_wcrtTF6eRunYu-nQFfYzUj-T4acJE2RkHwisws9T6uZyN5NMjuw8Yk1_955Lt39_2m89su_v42rxuMzSwzgpfagnOaQ_CSESJTtsanQDQ2kkjK1d5UwAoFwpZFbVWyvpaurK0wZqgluz5T9sP3WnyaTwcu2mYx6TDbBAgrdZr9QuGElvn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440216449</pqid></control><display><type>article</type><title>On the differentiability of the minimal and maximal solution maps of elliptic quasi-variational inequalities</title><source>Publicly Available Content Database</source><creator>Amal Alphonse ; Hintermüller, Michael ; Rautenberg, Carlos N</creator><creatorcontrib>Amal Alphonse ; Hintermüller, Michael ; Rautenberg, Carlos N</creatorcontrib><description>In this note, we prove that the minimal and maximal solution maps associated to elliptic quasi-variational inequalities of obstacle type are directionally differentiable with respect to the forcing term and for directions that are signed. Along the way, we show that the minimal and maximal solutions can be seen as monotone limits of solutions of certain variational inequalities and that the aforementioned directional derivatives can also be characterised as the monotone limits of sequences of directional derivatives associated to variational inequalities. We conclude the paper with some examples and an application to thermoforming.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2009.01626</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Derivatives ; Estimates ; Inequalities</subject><ispartof>arXiv.org, 2021-10</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2440216449?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25740,27912,36999,44577</link.rule.ids></links><search><creatorcontrib>Amal Alphonse</creatorcontrib><creatorcontrib>Hintermüller, Michael</creatorcontrib><creatorcontrib>Rautenberg, Carlos N</creatorcontrib><title>On the differentiability of the minimal and maximal solution maps of elliptic quasi-variational inequalities</title><title>arXiv.org</title><description>In this note, we prove that the minimal and maximal solution maps associated to elliptic quasi-variational inequalities of obstacle type are directionally differentiable with respect to the forcing term and for directions that are signed. Along the way, we show that the minimal and maximal solutions can be seen as monotone limits of solutions of certain variational inequalities and that the aforementioned directional derivatives can also be characterised as the monotone limits of sequences of directional derivatives associated to variational inequalities. We conclude the paper with some examples and an application to thermoforming.</description><subject>Derivatives</subject><subject>Estimates</subject><subject>Inequalities</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjstqwzAQRUWh0JDmA7oTdG1XGj3sLEvoCwLZZB_GskQnyI9Ydkj_vk7a1R3uHA6XsScpcl0aI15wuNA5ByHWuZAW7B1bgFIyKzXAA1uldBRCgC3AGLVgcdfy8dvzmkLwg29HwooijT-8C7dHQy01GDm2NW_wcrtTF6eRunYu-nQFfYzUj-T4acJE2RkHwisws9T6uZyN5NMjuw8Yk1_955Lt39_2m89su_v42rxuMzSwzgpfagnOaQ_CSESJTtsanQDQ2kkjK1d5UwAoFwpZFbVWyvpaurK0wZqgluz5T9sP3WnyaTwcu2mYx6TDbBAgrdZr9QuGElvn</recordid><startdate>20211011</startdate><enddate>20211011</enddate><creator>Amal Alphonse</creator><creator>Hintermüller, Michael</creator><creator>Rautenberg, Carlos N</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211011</creationdate><title>On the differentiability of the minimal and maximal solution maps of elliptic quasi-variational inequalities</title><author>Amal Alphonse ; Hintermüller, Michael ; Rautenberg, Carlos N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-7e8412cc4e2051aa1ac46dac02244c151bcbe57223cf71b7d4336ed1c886f65f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Derivatives</topic><topic>Estimates</topic><topic>Inequalities</topic><toplevel>online_resources</toplevel><creatorcontrib>Amal Alphonse</creatorcontrib><creatorcontrib>Hintermüller, Michael</creatorcontrib><creatorcontrib>Rautenberg, Carlos N</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amal Alphonse</au><au>Hintermüller, Michael</au><au>Rautenberg, Carlos N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the differentiability of the minimal and maximal solution maps of elliptic quasi-variational inequalities</atitle><jtitle>arXiv.org</jtitle><date>2021-10-11</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this note, we prove that the minimal and maximal solution maps associated to elliptic quasi-variational inequalities of obstacle type are directionally differentiable with respect to the forcing term and for directions that are signed. Along the way, we show that the minimal and maximal solutions can be seen as monotone limits of solutions of certain variational inequalities and that the aforementioned directional derivatives can also be characterised as the monotone limits of sequences of directional derivatives associated to variational inequalities. We conclude the paper with some examples and an application to thermoforming.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2009.01626</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2440216449
source Publicly Available Content Database
subjects Derivatives
Estimates
Inequalities
title On the differentiability of the minimal and maximal solution maps of elliptic quasi-variational inequalities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20differentiability%20of%20the%20minimal%20and%20maximal%20solution%20maps%20of%20elliptic%20quasi-variational%20inequalities&rft.jtitle=arXiv.org&rft.au=Amal%20Alphonse&rft.date=2021-10-11&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2009.01626&rft_dat=%3Cproquest%3E2440216449%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-7e8412cc4e2051aa1ac46dac02244c151bcbe57223cf71b7d4336ed1c886f65f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2440216449&rft_id=info:pmid/&rfr_iscdi=true