Loading…
On the differentiability of the minimal and maximal solution maps of elliptic quasi-variational inequalities
In this note, we prove that the minimal and maximal solution maps associated to elliptic quasi-variational inequalities of obstacle type are directionally differentiable with respect to the forcing term and for directions that are signed. Along the way, we show that the minimal and maximal solutions...
Saved in:
Published in: | arXiv.org 2021-10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Amal Alphonse Hintermüller, Michael Rautenberg, Carlos N |
description | In this note, we prove that the minimal and maximal solution maps associated to elliptic quasi-variational inequalities of obstacle type are directionally differentiable with respect to the forcing term and for directions that are signed. Along the way, we show that the minimal and maximal solutions can be seen as monotone limits of solutions of certain variational inequalities and that the aforementioned directional derivatives can also be characterised as the monotone limits of sequences of directional derivatives associated to variational inequalities. We conclude the paper with some examples and an application to thermoforming. |
doi_str_mv | 10.48550/arxiv.2009.01626 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2440216449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440216449</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-7e8412cc4e2051aa1ac46dac02244c151bcbe57223cf71b7d4336ed1c886f65f3</originalsourceid><addsrcrecordid>eNotjstqwzAQRUWh0JDmA7oTdG1XGj3sLEvoCwLZZB_GskQnyI9Ydkj_vk7a1R3uHA6XsScpcl0aI15wuNA5ByHWuZAW7B1bgFIyKzXAA1uldBRCgC3AGLVgcdfy8dvzmkLwg29HwooijT-8C7dHQy01GDm2NW_wcrtTF6eRunYu-nQFfYzUj-T4acJE2RkHwisws9T6uZyN5NMjuw8Yk1_955Lt39_2m89su_v42rxuMzSwzgpfagnOaQ_CSESJTtsanQDQ2kkjK1d5UwAoFwpZFbVWyvpaurK0wZqgluz5T9sP3WnyaTwcu2mYx6TDbBAgrdZr9QuGElvn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440216449</pqid></control><display><type>article</type><title>On the differentiability of the minimal and maximal solution maps of elliptic quasi-variational inequalities</title><source>Publicly Available Content Database</source><creator>Amal Alphonse ; Hintermüller, Michael ; Rautenberg, Carlos N</creator><creatorcontrib>Amal Alphonse ; Hintermüller, Michael ; Rautenberg, Carlos N</creatorcontrib><description>In this note, we prove that the minimal and maximal solution maps associated to elliptic quasi-variational inequalities of obstacle type are directionally differentiable with respect to the forcing term and for directions that are signed. Along the way, we show that the minimal and maximal solutions can be seen as monotone limits of solutions of certain variational inequalities and that the aforementioned directional derivatives can also be characterised as the monotone limits of sequences of directional derivatives associated to variational inequalities. We conclude the paper with some examples and an application to thermoforming.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2009.01626</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Derivatives ; Estimates ; Inequalities</subject><ispartof>arXiv.org, 2021-10</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2440216449?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25740,27912,36999,44577</link.rule.ids></links><search><creatorcontrib>Amal Alphonse</creatorcontrib><creatorcontrib>Hintermüller, Michael</creatorcontrib><creatorcontrib>Rautenberg, Carlos N</creatorcontrib><title>On the differentiability of the minimal and maximal solution maps of elliptic quasi-variational inequalities</title><title>arXiv.org</title><description>In this note, we prove that the minimal and maximal solution maps associated to elliptic quasi-variational inequalities of obstacle type are directionally differentiable with respect to the forcing term and for directions that are signed. Along the way, we show that the minimal and maximal solutions can be seen as monotone limits of solutions of certain variational inequalities and that the aforementioned directional derivatives can also be characterised as the monotone limits of sequences of directional derivatives associated to variational inequalities. We conclude the paper with some examples and an application to thermoforming.</description><subject>Derivatives</subject><subject>Estimates</subject><subject>Inequalities</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjstqwzAQRUWh0JDmA7oTdG1XGj3sLEvoCwLZZB_GskQnyI9Ydkj_vk7a1R3uHA6XsScpcl0aI15wuNA5ByHWuZAW7B1bgFIyKzXAA1uldBRCgC3AGLVgcdfy8dvzmkLwg29HwooijT-8C7dHQy01GDm2NW_wcrtTF6eRunYu-nQFfYzUj-T4acJE2RkHwisws9T6uZyN5NMjuw8Yk1_955Lt39_2m89su_v42rxuMzSwzgpfagnOaQ_CSESJTtsanQDQ2kkjK1d5UwAoFwpZFbVWyvpaurK0wZqgluz5T9sP3WnyaTwcu2mYx6TDbBAgrdZr9QuGElvn</recordid><startdate>20211011</startdate><enddate>20211011</enddate><creator>Amal Alphonse</creator><creator>Hintermüller, Michael</creator><creator>Rautenberg, Carlos N</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211011</creationdate><title>On the differentiability of the minimal and maximal solution maps of elliptic quasi-variational inequalities</title><author>Amal Alphonse ; Hintermüller, Michael ; Rautenberg, Carlos N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-7e8412cc4e2051aa1ac46dac02244c151bcbe57223cf71b7d4336ed1c886f65f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Derivatives</topic><topic>Estimates</topic><topic>Inequalities</topic><toplevel>online_resources</toplevel><creatorcontrib>Amal Alphonse</creatorcontrib><creatorcontrib>Hintermüller, Michael</creatorcontrib><creatorcontrib>Rautenberg, Carlos N</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amal Alphonse</au><au>Hintermüller, Michael</au><au>Rautenberg, Carlos N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the differentiability of the minimal and maximal solution maps of elliptic quasi-variational inequalities</atitle><jtitle>arXiv.org</jtitle><date>2021-10-11</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this note, we prove that the minimal and maximal solution maps associated to elliptic quasi-variational inequalities of obstacle type are directionally differentiable with respect to the forcing term and for directions that are signed. Along the way, we show that the minimal and maximal solutions can be seen as monotone limits of solutions of certain variational inequalities and that the aforementioned directional derivatives can also be characterised as the monotone limits of sequences of directional derivatives associated to variational inequalities. We conclude the paper with some examples and an application to thermoforming.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2009.01626</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2440216449 |
source | Publicly Available Content Database |
subjects | Derivatives Estimates Inequalities |
title | On the differentiability of the minimal and maximal solution maps of elliptic quasi-variational inequalities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20differentiability%20of%20the%20minimal%20and%20maximal%20solution%20maps%20of%20elliptic%20quasi-variational%20inequalities&rft.jtitle=arXiv.org&rft.au=Amal%20Alphonse&rft.date=2021-10-11&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2009.01626&rft_dat=%3Cproquest%3E2440216449%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-7e8412cc4e2051aa1ac46dac02244c151bcbe57223cf71b7d4336ed1c886f65f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2440216449&rft_id=info:pmid/&rfr_iscdi=true |