Loading…
Optimal Cooling System Design for Increasing the Crystal Growth Rate of Single-Crystal Silicon Ingots in the Czochralski Process Using the Crystal Growth Simulation
Here, we report a successfully modified Czochralski process system by introducing the cooling system and subsequent examination of the results using crystal growth simulation analysis. Two types of cooling system models have been designed, i.e., long type and double type cooling design (LTCD and DTC...
Saved in:
Published in: | Processes 2020-09, Vol.8 (9), p.1077 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Here, we report a successfully modified Czochralski process system by introducing the cooling system and subsequent examination of the results using crystal growth simulation analysis. Two types of cooling system models have been designed, i.e., long type and double type cooling design (LTCD and DTCD) and their production quality of monocrystalline silicon ingot was compared with that of the basic type cooling design (BTCD) system. The designed cooling system improved the uniformity of the temperature gradient in the crystal and resulted in the significant decrease of the thermal stress. Moreover, the silicon monocrystalline ingot growth rate has been enhanced to 18% by using BTCD system. The detailed simulation results have been discussed in the manuscript. The present research demonstrates that the proposed cooling system would stand as a promising technique to be applied in CZ-Si crystal growth with a large size/high pulling rate. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr8091077 |