Loading…
Lactoferrin Coating Improves the Antibacterial and Osteogenic Properties of Alkali-Treated Titanium with Nanonetwork Structures
Titanium and its alloys are the main dental implant materials used at present. The biological properties of pure titanium can be further improved by surface treatment methods. Alkali treatment of pure titanium at room temperature can form nanonetwork structures (TNS) on the surface, which has better...
Saved in:
Published in: | Journal of nanomaterials 2020, Vol.2020 (2020), p.1-13 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Titanium and its alloys are the main dental implant materials used at present. The biological properties of pure titanium can be further improved by surface treatment methods. Alkali treatment of pure titanium at room temperature can form nanonetwork structures (TNS) on the surface, which has better osteoinductive ability than pure titanium. However, TNS does not possess antimicrobial properties, and bacterial infection is one of the main reasons for the failure of dental implant therapy. Therefore, it was the focus of our research to endow TNS with certain antimicrobial properties on the premise of maintaining its osteoinductive ability. Because of its excellent broad-spectrum antimicrobial properties and because it promotes osteoblast-like cell growth, lactoferrin (LF) was considered a promising prospect as a surface biological treatment material. In this study, bovine LF of physiological concentration was successfully coated on the surface of TNS to form the TNS-LF composite material. Results from in vitro and in vivo experiments showed that TNS-LF had better osteoinductive ability than TNS. Bacterial attachment and biofilm formation were also significantly decreased on the surface of TNS-LF. Therefore, this study has provided an experimental basis for the development of osteoinduction-antimicrobial composite implant materials for dental applications. |
---|---|
ISSN: | 1687-4110 1687-4129 |
DOI: | 10.1155/2020/2516975 |