Loading…

Artificial synaptic transistors based on Schottky barrier height modulation using reduced graphene oxides

Development of artificial synapses is essential for highly-efficient brain-inspired neuromorphic computing. To achieve the high-performance artificial synapses, gradual change in synaptic weight with linear and symmetric forms is required. Here, we propose artificial synapses, in which synaptic weig...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) 2020-09, Vol.165, p.455-460
Main Authors: Park, Youngjun, Kim, Min-Kyu, Lee, Jang-Sik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-a487c1aa73ce9762c2b7227ea8018fcb2352c8bcb3f6ef2442d8632e85e6a0dd3
cites cdi_FETCH-LOGICAL-c334t-a487c1aa73ce9762c2b7227ea8018fcb2352c8bcb3f6ef2442d8632e85e6a0dd3
container_end_page 460
container_issue
container_start_page 455
container_title Carbon (New York)
container_volume 165
creator Park, Youngjun
Kim, Min-Kyu
Lee, Jang-Sik
description Development of artificial synapses is essential for highly-efficient brain-inspired neuromorphic computing. To achieve the high-performance artificial synapses, gradual change in synaptic weight with linear and symmetric forms is required. Here, we propose artificial synapses, in which synaptic weight is changed gradually by use of gate bias to modulate the Schottky barrier height between reduced graphene oxide and oxide semiconductor. This approach enables linear and symmetric change in synaptic weight. Also, an ion gel is used as the gate electrolyte, which can reduce the gate voltage required for modulation of Schottky barrier height. The fabricated artificial synapses show essential synaptic functions such as excitatory postsynaptic current, paired-pulse facilitation, and potentiation/depression. These results demonstrate that the devices that exploit modulation of Schottky barrier height can be applied to artificial synapses in advanced neuromorphic computing. [Display omitted]
doi_str_mv 10.1016/j.carbon.2020.04.096
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440487350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622320304279</els_id><sourcerecordid>2440487350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-a487c1aa73ce9762c2b7227ea8018fcb2352c8bcb3f6ef2442d8632e85e6a0dd3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEuXxDzhY4pzgVxP3glRVvKRKHICz5TibxqG1g-0g-u9xVc6cVruamdV8CN1QUlJCq7uhNDo03pWMMFISUZJFdYJmVNa84HJBT9GMECKLijF-ji5iHPIqJBUzZJch2c4aq7c47p0ekzU4Be2ijcmHiBsdocXe4TfT-5Q-9_kSgoWAe7CbPuGdb6etTjZLpmjdBgdoJ5M9m6DHHhxg_2NbiFforNPbCNd_8xJ9PD68r56L9evTy2q5LgznIhVayNpQrWtuYFFXzLCmZqwGLQmVnWkYnzMjG9PwroKOCcFaWXEGcg6VJm3LL9HtMXcM_muCmNTgp-DyS5XVuXbN5ySrxFFlgo8xQKfGYHc67BUl6gBVDeoIVR2gKiJUhppt90cb5AbfmYKKxoLLdW0Ak1Tr7f8Bv_hbhFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440487350</pqid></control><display><type>article</type><title>Artificial synaptic transistors based on Schottky barrier height modulation using reduced graphene oxides</title><source>ScienceDirect Freedom Collection</source><creator>Park, Youngjun ; Kim, Min-Kyu ; Lee, Jang-Sik</creator><creatorcontrib>Park, Youngjun ; Kim, Min-Kyu ; Lee, Jang-Sik</creatorcontrib><description>Development of artificial synapses is essential for highly-efficient brain-inspired neuromorphic computing. To achieve the high-performance artificial synapses, gradual change in synaptic weight with linear and symmetric forms is required. Here, we propose artificial synapses, in which synaptic weight is changed gradually by use of gate bias to modulate the Schottky barrier height between reduced graphene oxide and oxide semiconductor. This approach enables linear and symmetric change in synaptic weight. Also, an ion gel is used as the gate electrolyte, which can reduce the gate voltage required for modulation of Schottky barrier height. The fabricated artificial synapses show essential synaptic functions such as excitatory postsynaptic current, paired-pulse facilitation, and potentiation/depression. These results demonstrate that the devices that exploit modulation of Schottky barrier height can be applied to artificial synapses in advanced neuromorphic computing. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2020.04.096</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Artificial synapses ; Computation ; Electrolytes ; Graphene ; Modulation ; Reduced graphene oxides ; Schottky barrier height modulation ; Semiconductors ; Symmetry ; Synapses ; Synaptic transistors ; Three-terminal devices ; Transistors ; Weight</subject><ispartof>Carbon (New York), 2020-09, Vol.165, p.455-460</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-a487c1aa73ce9762c2b7227ea8018fcb2352c8bcb3f6ef2442d8632e85e6a0dd3</citedby><cites>FETCH-LOGICAL-c334t-a487c1aa73ce9762c2b7227ea8018fcb2352c8bcb3f6ef2442d8632e85e6a0dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Park, Youngjun</creatorcontrib><creatorcontrib>Kim, Min-Kyu</creatorcontrib><creatorcontrib>Lee, Jang-Sik</creatorcontrib><title>Artificial synaptic transistors based on Schottky barrier height modulation using reduced graphene oxides</title><title>Carbon (New York)</title><description>Development of artificial synapses is essential for highly-efficient brain-inspired neuromorphic computing. To achieve the high-performance artificial synapses, gradual change in synaptic weight with linear and symmetric forms is required. Here, we propose artificial synapses, in which synaptic weight is changed gradually by use of gate bias to modulate the Schottky barrier height between reduced graphene oxide and oxide semiconductor. This approach enables linear and symmetric change in synaptic weight. Also, an ion gel is used as the gate electrolyte, which can reduce the gate voltage required for modulation of Schottky barrier height. The fabricated artificial synapses show essential synaptic functions such as excitatory postsynaptic current, paired-pulse facilitation, and potentiation/depression. These results demonstrate that the devices that exploit modulation of Schottky barrier height can be applied to artificial synapses in advanced neuromorphic computing. [Display omitted]</description><subject>Artificial synapses</subject><subject>Computation</subject><subject>Electrolytes</subject><subject>Graphene</subject><subject>Modulation</subject><subject>Reduced graphene oxides</subject><subject>Schottky barrier height modulation</subject><subject>Semiconductors</subject><subject>Symmetry</subject><subject>Synapses</subject><subject>Synaptic transistors</subject><subject>Three-terminal devices</subject><subject>Transistors</subject><subject>Weight</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEuXxDzhY4pzgVxP3glRVvKRKHICz5TibxqG1g-0g-u9xVc6cVruamdV8CN1QUlJCq7uhNDo03pWMMFISUZJFdYJmVNa84HJBT9GMECKLijF-ji5iHPIqJBUzZJch2c4aq7c47p0ekzU4Be2ijcmHiBsdocXe4TfT-5Q-9_kSgoWAe7CbPuGdb6etTjZLpmjdBgdoJ5M9m6DHHhxg_2NbiFforNPbCNd_8xJ9PD68r56L9evTy2q5LgznIhVayNpQrWtuYFFXzLCmZqwGLQmVnWkYnzMjG9PwroKOCcFaWXEGcg6VJm3LL9HtMXcM_muCmNTgp-DyS5XVuXbN5ySrxFFlgo8xQKfGYHc67BUl6gBVDeoIVR2gKiJUhppt90cb5AbfmYKKxoLLdW0Ak1Tr7f8Bv_hbhFY</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Park, Youngjun</creator><creator>Kim, Min-Kyu</creator><creator>Lee, Jang-Sik</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200915</creationdate><title>Artificial synaptic transistors based on Schottky barrier height modulation using reduced graphene oxides</title><author>Park, Youngjun ; Kim, Min-Kyu ; Lee, Jang-Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-a487c1aa73ce9762c2b7227ea8018fcb2352c8bcb3f6ef2442d8632e85e6a0dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial synapses</topic><topic>Computation</topic><topic>Electrolytes</topic><topic>Graphene</topic><topic>Modulation</topic><topic>Reduced graphene oxides</topic><topic>Schottky barrier height modulation</topic><topic>Semiconductors</topic><topic>Symmetry</topic><topic>Synapses</topic><topic>Synaptic transistors</topic><topic>Three-terminal devices</topic><topic>Transistors</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Youngjun</creatorcontrib><creatorcontrib>Kim, Min-Kyu</creatorcontrib><creatorcontrib>Lee, Jang-Sik</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Youngjun</au><au>Kim, Min-Kyu</au><au>Lee, Jang-Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial synaptic transistors based on Schottky barrier height modulation using reduced graphene oxides</atitle><jtitle>Carbon (New York)</jtitle><date>2020-09-15</date><risdate>2020</risdate><volume>165</volume><spage>455</spage><epage>460</epage><pages>455-460</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Development of artificial synapses is essential for highly-efficient brain-inspired neuromorphic computing. To achieve the high-performance artificial synapses, gradual change in synaptic weight with linear and symmetric forms is required. Here, we propose artificial synapses, in which synaptic weight is changed gradually by use of gate bias to modulate the Schottky barrier height between reduced graphene oxide and oxide semiconductor. This approach enables linear and symmetric change in synaptic weight. Also, an ion gel is used as the gate electrolyte, which can reduce the gate voltage required for modulation of Schottky barrier height. The fabricated artificial synapses show essential synaptic functions such as excitatory postsynaptic current, paired-pulse facilitation, and potentiation/depression. These results demonstrate that the devices that exploit modulation of Schottky barrier height can be applied to artificial synapses in advanced neuromorphic computing. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2020.04.096</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2020-09, Vol.165, p.455-460
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2440487350
source ScienceDirect Freedom Collection
subjects Artificial synapses
Computation
Electrolytes
Graphene
Modulation
Reduced graphene oxides
Schottky barrier height modulation
Semiconductors
Symmetry
Synapses
Synaptic transistors
Three-terminal devices
Transistors
Weight
title Artificial synaptic transistors based on Schottky barrier height modulation using reduced graphene oxides
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A02%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20synaptic%20transistors%20based%20on%20Schottky%20barrier%20height%20modulation%20using%20reduced%20graphene%20oxides&rft.jtitle=Carbon%20(New%20York)&rft.au=Park,%20Youngjun&rft.date=2020-09-15&rft.volume=165&rft.spage=455&rft.epage=460&rft.pages=455-460&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2020.04.096&rft_dat=%3Cproquest_cross%3E2440487350%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-a487c1aa73ce9762c2b7227ea8018fcb2352c8bcb3f6ef2442d8632e85e6a0dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2440487350&rft_id=info:pmid/&rfr_iscdi=true