Loading…

Thickness dependence of solar cell efficiency in transition metal dichalcogenides MX2 (M: Mo, W; X: S, Se, Te)

Bulk transition metal dichalcogenides are indirect gap semiconductors with optical gaps in the range of 0.7–1.6 eV, which makes them suitable for solar cell applications. In this work, we study the electronic structure, optical properties, and the thickness dependence of the solar cell efficiencies...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy materials and solar cells 2020-08, Vol.212, p.110557, Article 110557
Main Authors: Ozdemir, Burak, Barone, Veronica
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bulk transition metal dichalcogenides are indirect gap semiconductors with optical gaps in the range of 0.7–1.6 eV, which makes them suitable for solar cell applications. In this work, we study the electronic structure, optical properties, and the thickness dependence of the solar cell efficiencies of MX2 (M: Mo, W; X: S, Se, Te) with density functional theory and GW + BSE. Through this analysis, we find a change in solar cell efficiency trends at slab thicknesses of 3 μm. For thin films solar cells (thicknesses smaller than 3 μm), the tellurides present the highest efficiencies (about 20% for a 100 nm thick slab). In contrast, for thicknesses greater than 3 μm, our results indicate that a maximum solar cell efficiency can be achieved in WS2. For instance, a 100 μm slab of WS2 presents a solar cell efficiency of 36.3%, making this material a promising candidate for solar cell applications. •Thickness dependent solar cell efficiency of transition metal dichalcogenides•20% solar cell efficiency for thin films of MoTe2 and 36% solar cell efficiency for thick films of WS2•Highest solar cell efficiency is found for WS2.•With the use of an ideal anti-reflective coating, it is possible to reach 66% of efficiency.
ISSN:0927-0248
1879-3398
DOI:10.1016/j.solmat.2020.110557