Loading…
Far field of turbulent spots
The proliferation of turbulence in subcritical wall-bounded shear flows involves spatially localised coherent structures. Turbulent spots correspond to finite-time nonlinear responses to pointwise disturbances and are regarded as seeds of turbulence during transition. The rapid spatial decay of the...
Saved in:
Published in: | arXiv.org 2020-09 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kashyap, Pavan V Duguet, Yohann Chantry, Matthew |
description | The proliferation of turbulence in subcritical wall-bounded shear flows involves spatially localised coherent structures. Turbulent spots correspond to finite-time nonlinear responses to pointwise disturbances and are regarded as seeds of turbulence during transition. The rapid spatial decay of the turbulent fluctuations away from a spot is accompanied by large-scale flows with a robust structuration. The far field velocity field of these spots is investigated numerically using spectral methods in large domains in four different flow scenarios (plane Couette, plane Poiseuille, Couette-Poiseuille and a sinusoidal shear flow). At odds with former expectations, the planar components of the velocity field decay algebraically. These decay exponents depend only on the symmetries of the system, which here depend on the presence of an applied gradient, and not on the Reynolds number. This suggests an effective two-dimensional multipolar expansion for the far field, dominated by a quadrupolar flow component or, for asymmetric flow fields, by a dipolar flow component. |
doi_str_mv | 10.48550/arxiv.2009.02108 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2440544684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440544684</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-54d7e035ff18f520ea8b9a332f94dfec31273c1a37b85d681f0ca69fd60d082e3</originalsourceid><addsrcrecordid>eNotzc1Kw0AUQOFBEFpqH0DoIuA68c79SSZLKVYLBTfdl0lmLrSEps4k4uMr6OrsvmPMo4WKnQg8-_R9_qoQoK0ALbg7s0QiWzpGXJh1zhcAwLpBEVqazc6nQs9xCMWoxTSnbh7idSrybZzyg7lXP-S4_u_KHHevx-17efh4229fDqUX5FI4NBFIVK1TQYjeda0nQm05aOzJYkO99dR0TkLtrELv61ZDDQEcRlqZpz_2lsbPOebpdBnndP09npAZhLl2TD_JKT0t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440544684</pqid></control><display><type>article</type><title>Far field of turbulent spots</title><source>Publicly Available Content Database</source><creator>Kashyap, Pavan V ; Duguet, Yohann ; Chantry, Matthew</creator><creatorcontrib>Kashyap, Pavan V ; Duguet, Yohann ; Chantry, Matthew</creatorcontrib><description>The proliferation of turbulence in subcritical wall-bounded shear flows involves spatially localised coherent structures. Turbulent spots correspond to finite-time nonlinear responses to pointwise disturbances and are regarded as seeds of turbulence during transition. The rapid spatial decay of the turbulent fluctuations away from a spot is accompanied by large-scale flows with a robust structuration. The far field velocity field of these spots is investigated numerically using spectral methods in large domains in four different flow scenarios (plane Couette, plane Poiseuille, Couette-Poiseuille and a sinusoidal shear flow). At odds with former expectations, the planar components of the velocity field decay algebraically. These decay exponents depend only on the symmetries of the system, which here depend on the presence of an applied gradient, and not on the Reynolds number. This suggests an effective two-dimensional multipolar expansion for the far field, dominated by a quadrupolar flow component or, for asymmetric flow fields, by a dipolar flow component.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2009.02108</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computational fluid dynamics ; Decay ; Fluid flow ; Numerical methods ; Reynolds number ; Robustness (mathematics) ; Shear flow ; Spectral methods ; Turbulence ; Velocity distribution</subject><ispartof>arXiv.org, 2020-09</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2440544684?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Kashyap, Pavan V</creatorcontrib><creatorcontrib>Duguet, Yohann</creatorcontrib><creatorcontrib>Chantry, Matthew</creatorcontrib><title>Far field of turbulent spots</title><title>arXiv.org</title><description>The proliferation of turbulence in subcritical wall-bounded shear flows involves spatially localised coherent structures. Turbulent spots correspond to finite-time nonlinear responses to pointwise disturbances and are regarded as seeds of turbulence during transition. The rapid spatial decay of the turbulent fluctuations away from a spot is accompanied by large-scale flows with a robust structuration. The far field velocity field of these spots is investigated numerically using spectral methods in large domains in four different flow scenarios (plane Couette, plane Poiseuille, Couette-Poiseuille and a sinusoidal shear flow). At odds with former expectations, the planar components of the velocity field decay algebraically. These decay exponents depend only on the symmetries of the system, which here depend on the presence of an applied gradient, and not on the Reynolds number. This suggests an effective two-dimensional multipolar expansion for the far field, dominated by a quadrupolar flow component or, for asymmetric flow fields, by a dipolar flow component.</description><subject>Computational fluid dynamics</subject><subject>Decay</subject><subject>Fluid flow</subject><subject>Numerical methods</subject><subject>Reynolds number</subject><subject>Robustness (mathematics)</subject><subject>Shear flow</subject><subject>Spectral methods</subject><subject>Turbulence</subject><subject>Velocity distribution</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzc1Kw0AUQOFBEFpqH0DoIuA68c79SSZLKVYLBTfdl0lmLrSEps4k4uMr6OrsvmPMo4WKnQg8-_R9_qoQoK0ALbg7s0QiWzpGXJh1zhcAwLpBEVqazc6nQs9xCMWoxTSnbh7idSrybZzyg7lXP-S4_u_KHHevx-17efh4229fDqUX5FI4NBFIVK1TQYjeda0nQm05aOzJYkO99dR0TkLtrELv61ZDDQEcRlqZpz_2lsbPOebpdBnndP09npAZhLl2TD_JKT0t</recordid><startdate>20200904</startdate><enddate>20200904</enddate><creator>Kashyap, Pavan V</creator><creator>Duguet, Yohann</creator><creator>Chantry, Matthew</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200904</creationdate><title>Far field of turbulent spots</title><author>Kashyap, Pavan V ; Duguet, Yohann ; Chantry, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-54d7e035ff18f520ea8b9a332f94dfec31273c1a37b85d681f0ca69fd60d082e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Decay</topic><topic>Fluid flow</topic><topic>Numerical methods</topic><topic>Reynolds number</topic><topic>Robustness (mathematics)</topic><topic>Shear flow</topic><topic>Spectral methods</topic><topic>Turbulence</topic><topic>Velocity distribution</topic><toplevel>online_resources</toplevel><creatorcontrib>Kashyap, Pavan V</creatorcontrib><creatorcontrib>Duguet, Yohann</creatorcontrib><creatorcontrib>Chantry, Matthew</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kashyap, Pavan V</au><au>Duguet, Yohann</au><au>Chantry, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Far field of turbulent spots</atitle><jtitle>arXiv.org</jtitle><date>2020-09-04</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>The proliferation of turbulence in subcritical wall-bounded shear flows involves spatially localised coherent structures. Turbulent spots correspond to finite-time nonlinear responses to pointwise disturbances and are regarded as seeds of turbulence during transition. The rapid spatial decay of the turbulent fluctuations away from a spot is accompanied by large-scale flows with a robust structuration. The far field velocity field of these spots is investigated numerically using spectral methods in large domains in four different flow scenarios (plane Couette, plane Poiseuille, Couette-Poiseuille and a sinusoidal shear flow). At odds with former expectations, the planar components of the velocity field decay algebraically. These decay exponents depend only on the symmetries of the system, which here depend on the presence of an applied gradient, and not on the Reynolds number. This suggests an effective two-dimensional multipolar expansion for the far field, dominated by a quadrupolar flow component or, for asymmetric flow fields, by a dipolar flow component.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2009.02108</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2440544684 |
source | Publicly Available Content Database |
subjects | Computational fluid dynamics Decay Fluid flow Numerical methods Reynolds number Robustness (mathematics) Shear flow Spectral methods Turbulence Velocity distribution |
title | Far field of turbulent spots |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T22%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Far%20field%20of%20turbulent%20spots&rft.jtitle=arXiv.org&rft.au=Kashyap,%20Pavan%20V&rft.date=2020-09-04&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2009.02108&rft_dat=%3Cproquest%3E2440544684%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-54d7e035ff18f520ea8b9a332f94dfec31273c1a37b85d681f0ca69fd60d082e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2440544684&rft_id=info:pmid/&rfr_iscdi=true |