Loading…

Cavity flow characteristics and applications to kidney stone removal

Ureteroscopy is a minimally invasive surgical procedure for the removal of kidney stones. A ureteroscope, containing a hollow, cylindrical working channel, is inserted into the patient's kidney. The renal space proximal to the scope tip is irrigated, to clear stone particles and debris, with a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2020-11, Vol.902, Article A16
Main Authors: Williams, J. G., Castrejón-Pita, A. A., Turney, B. W., Farrell, P. E., Tavener, S. J., Moulton, D. E., Waters, S. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-cff1450846946e6aee03fe5a8605e1ba30978f4a79190db4a3c3d80fe6a8c1e03
cites cdi_FETCH-LOGICAL-c340t-cff1450846946e6aee03fe5a8605e1ba30978f4a79190db4a3c3d80fe6a8c1e03
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 902
creator Williams, J. G.
Castrejón-Pita, A. A.
Turney, B. W.
Farrell, P. E.
Tavener, S. J.
Moulton, D. E.
Waters, S. L.
description Ureteroscopy is a minimally invasive surgical procedure for the removal of kidney stones. A ureteroscope, containing a hollow, cylindrical working channel, is inserted into the patient's kidney. The renal space proximal to the scope tip is irrigated, to clear stone particles and debris, with a saline solution that flows in through the working channel. We consider the fluid dynamics of irrigation fluid within the renal pelvis, resulting from the emerging jet through the working channel and return flow through an access sheath. Representing the renal pelvis as a two-dimensional rectangular cavity, we investigate the effects of flow rate and cavity size on flow structure and subsequent clearance time of debris. Fluid flow is modelled with the steady incompressible Navier–Stokes equations, with an imposed Poiseuille profile at the inlet boundary to model the jet of saline, and zero-stress conditions on the outlets. The resulting flow patterns in the cavity contain multiple vortical structures. We demonstrate the existence of multiple solutions dependent on the Reynolds number of the flow and the aspect ratio of the cavity using complementary numerical simulations and particle image velocimetry experiments. The clearance of an initial debris cloud is simulated via solutions to an advection–diffusion equation and we characterise the effects of the initial position of the debris cloud within the vortical flow and the Péclet number on clearance time. With only weak diffusion, debris that initiates within closed streamlines can become trapped. We discuss a flow manipulation strategy to extract debris from vortices and decrease washout time.
doi_str_mv 10.1017/jfm.2020.583
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440606903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2020_583</cupid><sourcerecordid>2440606903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-cff1450846946e6aee03fe5a8605e1ba30978f4a79190db4a3c3d80fe6a8c1e03</originalsourceid><addsrcrecordid>eNptkD1PwzAURS0EEqWw8QMssZLwnDhOMqLyKVVigdl6dWxwSeJgu0X997iiEgvTW8679-oQcskgZ8Dqm7UZ8gIKyKumPCIzxkWb1YJXx2QGUBQZYwWckrMQ1gCshLaekbsFbm3cUdO7b6o-0KOK2tsQrQoUx47iNPVWYbRuDDQ6-mm7Ue9oiG7U1OvBbbE_JycG-6AvDndO3h7uXxdP2fLl8Xlxu8xUySFmyhjGK2jSLC60QK2hNLrCRkCl2Qr3ixrDsW5ZC92KY6nKrgGT0EaxBM_J1W_u5N3XRoco127jx1QpC85BgGihTNT1L6W8C8FrIydvB_Q7yUDuPcnkSe49yeQp4fkBx2Hlbfeu_1L_ffgB0KBqfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440606903</pqid></control><display><type>article</type><title>Cavity flow characteristics and applications to kidney stone removal</title><source>Cambridge University Press</source><creator>Williams, J. G. ; Castrejón-Pita, A. A. ; Turney, B. W. ; Farrell, P. E. ; Tavener, S. J. ; Moulton, D. E. ; Waters, S. L.</creator><creatorcontrib>Williams, J. G. ; Castrejón-Pita, A. A. ; Turney, B. W. ; Farrell, P. E. ; Tavener, S. J. ; Moulton, D. E. ; Waters, S. L.</creatorcontrib><description>Ureteroscopy is a minimally invasive surgical procedure for the removal of kidney stones. A ureteroscope, containing a hollow, cylindrical working channel, is inserted into the patient's kidney. The renal space proximal to the scope tip is irrigated, to clear stone particles and debris, with a saline solution that flows in through the working channel. We consider the fluid dynamics of irrigation fluid within the renal pelvis, resulting from the emerging jet through the working channel and return flow through an access sheath. Representing the renal pelvis as a two-dimensional rectangular cavity, we investigate the effects of flow rate and cavity size on flow structure and subsequent clearance time of debris. Fluid flow is modelled with the steady incompressible Navier–Stokes equations, with an imposed Poiseuille profile at the inlet boundary to model the jet of saline, and zero-stress conditions on the outlets. The resulting flow patterns in the cavity contain multiple vortical structures. We demonstrate the existence of multiple solutions dependent on the Reynolds number of the flow and the aspect ratio of the cavity using complementary numerical simulations and particle image velocimetry experiments. The clearance of an initial debris cloud is simulated via solutions to an advection–diffusion equation and we characterise the effects of the initial position of the debris cloud within the vortical flow and the Péclet number on clearance time. With only weak diffusion, debris that initiates within closed streamlines can become trapped. We discuss a flow manipulation strategy to extract debris from vortices and decrease washout time.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.583</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Advection-diffusion equation ; Aspect ratio ; Calculi ; Cavity flow ; Computational fluid dynamics ; Computer simulation ; Debris ; Detritus ; Diffusion ; Flow characteristics ; Flow structures ; Flow velocity ; Fluid dynamics ; Fluid flow ; Geometry ; Hydrodynamics ; Incompressible flow ; Inlets (waterways) ; JFM Papers ; Kidney stones ; Kidneys ; Lasers ; Mathematical models ; Navier-Stokes equations ; Nephrolithiasis ; Particle image velocimetry ; Pelvis ; Removal ; Return flow ; Reynolds number ; Saline solutions ; Sheaths ; Streamlines ; Surgeons ; Vortices</subject><ispartof>Journal of fluid mechanics, 2020-11, Vol.902, Article A16</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-cff1450846946e6aee03fe5a8605e1ba30978f4a79190db4a3c3d80fe6a8c1e03</citedby><cites>FETCH-LOGICAL-c340t-cff1450846946e6aee03fe5a8605e1ba30978f4a79190db4a3c3d80fe6a8c1e03</cites><orcidid>0000-0003-4995-2582 ; 0000-0001-6127-5989 ; 0000-0002-1241-7060 ; 0000-0001-5285-0523 ; 0000-0003-0885-6404 ; 0000-0003-3597-7973</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112020005832/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Williams, J. G.</creatorcontrib><creatorcontrib>Castrejón-Pita, A. A.</creatorcontrib><creatorcontrib>Turney, B. W.</creatorcontrib><creatorcontrib>Farrell, P. E.</creatorcontrib><creatorcontrib>Tavener, S. J.</creatorcontrib><creatorcontrib>Moulton, D. E.</creatorcontrib><creatorcontrib>Waters, S. L.</creatorcontrib><title>Cavity flow characteristics and applications to kidney stone removal</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Ureteroscopy is a minimally invasive surgical procedure for the removal of kidney stones. A ureteroscope, containing a hollow, cylindrical working channel, is inserted into the patient's kidney. The renal space proximal to the scope tip is irrigated, to clear stone particles and debris, with a saline solution that flows in through the working channel. We consider the fluid dynamics of irrigation fluid within the renal pelvis, resulting from the emerging jet through the working channel and return flow through an access sheath. Representing the renal pelvis as a two-dimensional rectangular cavity, we investigate the effects of flow rate and cavity size on flow structure and subsequent clearance time of debris. Fluid flow is modelled with the steady incompressible Navier–Stokes equations, with an imposed Poiseuille profile at the inlet boundary to model the jet of saline, and zero-stress conditions on the outlets. The resulting flow patterns in the cavity contain multiple vortical structures. We demonstrate the existence of multiple solutions dependent on the Reynolds number of the flow and the aspect ratio of the cavity using complementary numerical simulations and particle image velocimetry experiments. The clearance of an initial debris cloud is simulated via solutions to an advection–diffusion equation and we characterise the effects of the initial position of the debris cloud within the vortical flow and the Péclet number on clearance time. With only weak diffusion, debris that initiates within closed streamlines can become trapped. We discuss a flow manipulation strategy to extract debris from vortices and decrease washout time.</description><subject>Advection-diffusion equation</subject><subject>Aspect ratio</subject><subject>Calculi</subject><subject>Cavity flow</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Debris</subject><subject>Detritus</subject><subject>Diffusion</subject><subject>Flow characteristics</subject><subject>Flow structures</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Geometry</subject><subject>Hydrodynamics</subject><subject>Incompressible flow</subject><subject>Inlets (waterways)</subject><subject>JFM Papers</subject><subject>Kidney stones</subject><subject>Kidneys</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Nephrolithiasis</subject><subject>Particle image velocimetry</subject><subject>Pelvis</subject><subject>Removal</subject><subject>Return flow</subject><subject>Reynolds number</subject><subject>Saline solutions</subject><subject>Sheaths</subject><subject>Streamlines</subject><subject>Surgeons</subject><subject>Vortices</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAURS0EEqWw8QMssZLwnDhOMqLyKVVigdl6dWxwSeJgu0X997iiEgvTW8679-oQcskgZ8Dqm7UZ8gIKyKumPCIzxkWb1YJXx2QGUBQZYwWckrMQ1gCshLaekbsFbm3cUdO7b6o-0KOK2tsQrQoUx47iNPVWYbRuDDQ6-mm7Ue9oiG7U1OvBbbE_JycG-6AvDndO3h7uXxdP2fLl8Xlxu8xUySFmyhjGK2jSLC60QK2hNLrCRkCl2Qr3ixrDsW5ZC92KY6nKrgGT0EaxBM_J1W_u5N3XRoco127jx1QpC85BgGihTNT1L6W8C8FrIydvB_Q7yUDuPcnkSe49yeQp4fkBx2Hlbfeu_1L_ffgB0KBqfw</recordid><startdate>20201110</startdate><enddate>20201110</enddate><creator>Williams, J. G.</creator><creator>Castrejón-Pita, A. A.</creator><creator>Turney, B. W.</creator><creator>Farrell, P. E.</creator><creator>Tavener, S. J.</creator><creator>Moulton, D. E.</creator><creator>Waters, S. L.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-4995-2582</orcidid><orcidid>https://orcid.org/0000-0001-6127-5989</orcidid><orcidid>https://orcid.org/0000-0002-1241-7060</orcidid><orcidid>https://orcid.org/0000-0001-5285-0523</orcidid><orcidid>https://orcid.org/0000-0003-0885-6404</orcidid><orcidid>https://orcid.org/0000-0003-3597-7973</orcidid></search><sort><creationdate>20201110</creationdate><title>Cavity flow characteristics and applications to kidney stone removal</title><author>Williams, J. G. ; Castrejón-Pita, A. A. ; Turney, B. W. ; Farrell, P. E. ; Tavener, S. J. ; Moulton, D. E. ; Waters, S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-cff1450846946e6aee03fe5a8605e1ba30978f4a79190db4a3c3d80fe6a8c1e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advection-diffusion equation</topic><topic>Aspect ratio</topic><topic>Calculi</topic><topic>Cavity flow</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Debris</topic><topic>Detritus</topic><topic>Diffusion</topic><topic>Flow characteristics</topic><topic>Flow structures</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Geometry</topic><topic>Hydrodynamics</topic><topic>Incompressible flow</topic><topic>Inlets (waterways)</topic><topic>JFM Papers</topic><topic>Kidney stones</topic><topic>Kidneys</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Nephrolithiasis</topic><topic>Particle image velocimetry</topic><topic>Pelvis</topic><topic>Removal</topic><topic>Return flow</topic><topic>Reynolds number</topic><topic>Saline solutions</topic><topic>Sheaths</topic><topic>Streamlines</topic><topic>Surgeons</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, J. G.</creatorcontrib><creatorcontrib>Castrejón-Pita, A. A.</creatorcontrib><creatorcontrib>Turney, B. W.</creatorcontrib><creatorcontrib>Farrell, P. E.</creatorcontrib><creatorcontrib>Tavener, S. J.</creatorcontrib><creatorcontrib>Moulton, D. E.</creatorcontrib><creatorcontrib>Waters, S. L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, J. G.</au><au>Castrejón-Pita, A. A.</au><au>Turney, B. W.</au><au>Farrell, P. E.</au><au>Tavener, S. J.</au><au>Moulton, D. E.</au><au>Waters, S. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cavity flow characteristics and applications to kidney stone removal</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2020-11-10</date><risdate>2020</risdate><volume>902</volume><artnum>A16</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Ureteroscopy is a minimally invasive surgical procedure for the removal of kidney stones. A ureteroscope, containing a hollow, cylindrical working channel, is inserted into the patient's kidney. The renal space proximal to the scope tip is irrigated, to clear stone particles and debris, with a saline solution that flows in through the working channel. We consider the fluid dynamics of irrigation fluid within the renal pelvis, resulting from the emerging jet through the working channel and return flow through an access sheath. Representing the renal pelvis as a two-dimensional rectangular cavity, we investigate the effects of flow rate and cavity size on flow structure and subsequent clearance time of debris. Fluid flow is modelled with the steady incompressible Navier–Stokes equations, with an imposed Poiseuille profile at the inlet boundary to model the jet of saline, and zero-stress conditions on the outlets. The resulting flow patterns in the cavity contain multiple vortical structures. We demonstrate the existence of multiple solutions dependent on the Reynolds number of the flow and the aspect ratio of the cavity using complementary numerical simulations and particle image velocimetry experiments. The clearance of an initial debris cloud is simulated via solutions to an advection–diffusion equation and we characterise the effects of the initial position of the debris cloud within the vortical flow and the Péclet number on clearance time. With only weak diffusion, debris that initiates within closed streamlines can become trapped. We discuss a flow manipulation strategy to extract debris from vortices and decrease washout time.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.583</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-4995-2582</orcidid><orcidid>https://orcid.org/0000-0001-6127-5989</orcidid><orcidid>https://orcid.org/0000-0002-1241-7060</orcidid><orcidid>https://orcid.org/0000-0001-5285-0523</orcidid><orcidid>https://orcid.org/0000-0003-0885-6404</orcidid><orcidid>https://orcid.org/0000-0003-3597-7973</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2020-11, Vol.902, Article A16
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2440606903
source Cambridge University Press
subjects Advection-diffusion equation
Aspect ratio
Calculi
Cavity flow
Computational fluid dynamics
Computer simulation
Debris
Detritus
Diffusion
Flow characteristics
Flow structures
Flow velocity
Fluid dynamics
Fluid flow
Geometry
Hydrodynamics
Incompressible flow
Inlets (waterways)
JFM Papers
Kidney stones
Kidneys
Lasers
Mathematical models
Navier-Stokes equations
Nephrolithiasis
Particle image velocimetry
Pelvis
Removal
Return flow
Reynolds number
Saline solutions
Sheaths
Streamlines
Surgeons
Vortices
title Cavity flow characteristics and applications to kidney stone removal
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cavity%20flow%20characteristics%20and%20applications%20to%20kidney%20stone%20removal&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Williams,%20J.%20G.&rft.date=2020-11-10&rft.volume=902&rft.artnum=A16&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.583&rft_dat=%3Cproquest_cross%3E2440606903%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-cff1450846946e6aee03fe5a8605e1ba30978f4a79190db4a3c3d80fe6a8c1e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2440606903&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2020_583&rfr_iscdi=true