Loading…
The anisotropic regularity criteria for 3D Navier–Stokes equations involving one velocity component
The anisotropic regularity criterion for the Navier–Stokes equations in terms of the one component of the velocity gradient (∂iuj,1≤i,j≤3) is investigated. It is an improvement of results of Qian (2016) and is also a complement of the results of Guo et al. (2018) for i=j. Besides, the consistent reg...
Saved in:
Published in: | Nonlinear analysis: real world applications 2020-08, Vol.54, p.103094, Article 103094 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-6dd2d30d9684f652e385207be6ec0ae3d3e32eb855e9195917724f42e8c70f003 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-6dd2d30d9684f652e385207be6ec0ae3d3e32eb855e9195917724f42e8c70f003 |
container_end_page | |
container_issue | |
container_start_page | 103094 |
container_title | Nonlinear analysis: real world applications |
container_volume | 54 |
creator | Qian, Chenyin |
description | The anisotropic regularity criterion for the Navier–Stokes equations in terms of the one component of the velocity gradient (∂iuj,1≤i,j≤3) is investigated. It is an improvement of results of Qian (2016) and is also a complement of the results of Guo et al. (2018) for i=j. Besides, the consistent regularity criterion without distinguishing i=j and i≠j is also obtained. Finally, the regularity result based on the fractional derivatives for one component of the velocity field Dhαu3 with α∈[0,1] is also established, which can be reduced to some previous results with α=0 and α=1. |
doi_str_mv | 10.1016/j.nonrwa.2020.103094 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440679326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1468121820300122</els_id><sourcerecordid>2440679326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-6dd2d30d9684f652e385207be6ec0ae3d3e32eb855e9195917724f42e8c70f003</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwBywssU7xK68NEipPqYIFZW25zqQ4pHZrO0Hd8Q_8IV9CQlizmRld3bmjOVF0TvCMYJJe1jNjjfuQM4rpIDFc8INoQvIsj5OMFIf9zNM8JpTkx9GJ9zXGJCOMTCJYvgGSRnsbnN1qhRys20Y6HfZI9RWclqiyDrEb9CQ7De778-sl2HfwCHatDNoaj7TpbNNps0bWAOqgseo3wG62vWDCaXRUycbD2V-fRq93t8v5Q7x4vn-cXy9ixRgPcVqWtGS4LNKcV2lCgeUJxdkKUlBYAisZMAqrPEmgIEVSkCyjvOIUcpXhCmM2jS7G3K2zuxZ8ELVtnelPCso5TrOC0bR38dGlnPXeQSW2Tm-k2wuCxQBU1GIEKgagYgTar12Na9B_MJAQXmkwCkrtQAVRWv1_wA8RkIK-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440679326</pqid></control><display><type>article</type><title>The anisotropic regularity criteria for 3D Navier–Stokes equations involving one velocity component</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Qian, Chenyin</creator><creatorcontrib>Qian, Chenyin</creatorcontrib><description>The anisotropic regularity criterion for the Navier–Stokes equations in terms of the one component of the velocity gradient (∂iuj,1≤i,j≤3) is investigated. It is an improvement of results of Qian (2016) and is also a complement of the results of Guo et al. (2018) for i=j. Besides, the consistent regularity criterion without distinguishing i=j and i≠j is also obtained. Finally, the regularity result based on the fractional derivatives for one component of the velocity field Dhαu3 with α∈[0,1] is also established, which can be reduced to some previous results with α=0 and α=1.</description><identifier>ISSN: 1468-1218</identifier><identifier>EISSN: 1878-5719</identifier><identifier>DOI: 10.1016/j.nonrwa.2020.103094</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Anisotropic regularity criterion ; Computational fluid dynamics ; Criteria ; Fluid flow ; Leray–Hopf weak solution ; Mathematical analysis ; Navier-Stokes equations ; Regularity ; Velocity distribution ; Velocity gradient</subject><ispartof>Nonlinear analysis: real world applications, 2020-08, Vol.54, p.103094, Article 103094</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-6dd2d30d9684f652e385207be6ec0ae3d3e32eb855e9195917724f42e8c70f003</citedby><cites>FETCH-LOGICAL-c334t-6dd2d30d9684f652e385207be6ec0ae3d3e32eb855e9195917724f42e8c70f003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Qian, Chenyin</creatorcontrib><title>The anisotropic regularity criteria for 3D Navier–Stokes equations involving one velocity component</title><title>Nonlinear analysis: real world applications</title><description>The anisotropic regularity criterion for the Navier–Stokes equations in terms of the one component of the velocity gradient (∂iuj,1≤i,j≤3) is investigated. It is an improvement of results of Qian (2016) and is also a complement of the results of Guo et al. (2018) for i=j. Besides, the consistent regularity criterion without distinguishing i=j and i≠j is also obtained. Finally, the regularity result based on the fractional derivatives for one component of the velocity field Dhαu3 with α∈[0,1] is also established, which can be reduced to some previous results with α=0 and α=1.</description><subject>Anisotropic regularity criterion</subject><subject>Computational fluid dynamics</subject><subject>Criteria</subject><subject>Fluid flow</subject><subject>Leray–Hopf weak solution</subject><subject>Mathematical analysis</subject><subject>Navier-Stokes equations</subject><subject>Regularity</subject><subject>Velocity distribution</subject><subject>Velocity gradient</subject><issn>1468-1218</issn><issn>1878-5719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEqXwBywssU7xK68NEipPqYIFZW25zqQ4pHZrO0Hd8Q_8IV9CQlizmRld3bmjOVF0TvCMYJJe1jNjjfuQM4rpIDFc8INoQvIsj5OMFIf9zNM8JpTkx9GJ9zXGJCOMTCJYvgGSRnsbnN1qhRys20Y6HfZI9RWclqiyDrEb9CQ7De778-sl2HfwCHatDNoaj7TpbNNps0bWAOqgseo3wG62vWDCaXRUycbD2V-fRq93t8v5Q7x4vn-cXy9ixRgPcVqWtGS4LNKcV2lCgeUJxdkKUlBYAisZMAqrPEmgIEVSkCyjvOIUcpXhCmM2jS7G3K2zuxZ8ELVtnelPCso5TrOC0bR38dGlnPXeQSW2Tm-k2wuCxQBU1GIEKgagYgTar12Na9B_MJAQXmkwCkrtQAVRWv1_wA8RkIK-</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Qian, Chenyin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202008</creationdate><title>The anisotropic regularity criteria for 3D Navier–Stokes equations involving one velocity component</title><author>Qian, Chenyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-6dd2d30d9684f652e385207be6ec0ae3d3e32eb855e9195917724f42e8c70f003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropic regularity criterion</topic><topic>Computational fluid dynamics</topic><topic>Criteria</topic><topic>Fluid flow</topic><topic>Leray–Hopf weak solution</topic><topic>Mathematical analysis</topic><topic>Navier-Stokes equations</topic><topic>Regularity</topic><topic>Velocity distribution</topic><topic>Velocity gradient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Chenyin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Chenyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The anisotropic regularity criteria for 3D Navier–Stokes equations involving one velocity component</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2020-08</date><risdate>2020</risdate><volume>54</volume><spage>103094</spage><pages>103094-</pages><artnum>103094</artnum><issn>1468-1218</issn><eissn>1878-5719</eissn><abstract>The anisotropic regularity criterion for the Navier–Stokes equations in terms of the one component of the velocity gradient (∂iuj,1≤i,j≤3) is investigated. It is an improvement of results of Qian (2016) and is also a complement of the results of Guo et al. (2018) for i=j. Besides, the consistent regularity criterion without distinguishing i=j and i≠j is also obtained. Finally, the regularity result based on the fractional derivatives for one component of the velocity field Dhαu3 with α∈[0,1] is also established, which can be reduced to some previous results with α=0 and α=1.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.nonrwa.2020.103094</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-1218 |
ispartof | Nonlinear analysis: real world applications, 2020-08, Vol.54, p.103094, Article 103094 |
issn | 1468-1218 1878-5719 |
language | eng |
recordid | cdi_proquest_journals_2440679326 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Anisotropic regularity criterion Computational fluid dynamics Criteria Fluid flow Leray–Hopf weak solution Mathematical analysis Navier-Stokes equations Regularity Velocity distribution Velocity gradient |
title | The anisotropic regularity criteria for 3D Navier–Stokes equations involving one velocity component |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20anisotropic%20regularity%20criteria%20for%203D%20Navier%E2%80%93Stokes%20equations%20involving%20one%20velocity%20component&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=Qian,%20Chenyin&rft.date=2020-08&rft.volume=54&rft.spage=103094&rft.pages=103094-&rft.artnum=103094&rft.issn=1468-1218&rft.eissn=1878-5719&rft_id=info:doi/10.1016/j.nonrwa.2020.103094&rft_dat=%3Cproquest_cross%3E2440679326%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-6dd2d30d9684f652e385207be6ec0ae3d3e32eb855e9195917724f42e8c70f003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2440679326&rft_id=info:pmid/&rfr_iscdi=true |