Loading…
A new simple algorithm for space charge limited emission
Many high power electronic devices operate in a regime where the current they draw is limited by the self-fields of the particles. This space charge limited current poses particular challenges for numerical modeling where common techniques like over-emission or Gauss' Law are computationally in...
Saved in:
Published in: | Physics of plasmas 2020-09, Vol.27 (9) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Many high power electronic devices operate in a regime where the current they draw is limited by the self-fields of the particles. This space charge limited current poses particular challenges for numerical modeling where common techniques like over-emission or Gauss' Law are computationally inefficient or produce nonphysical effects. In this paper, we show an algorithm using the value of the electric field in front of the surface instead of attempting to zero the field at the surface, making the algorithm particularly well suited to both electromagnetic and parallel implementations of the particle-in-cell algorithm. We show how the algorithm is self-consistent within the framework of finite difference (for both electrostatics and electromagnetics). We show several 1D and 2D benchmarks against both theory and previous computational results. Finally, we show the application in 3D to high power microwave generation in a 13 GHz magnetically insulated line oscillator. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/5.0020781 |