Loading…
Investigation into Microwave Absorption in Semiconductors for Frequency-Multiplication Devices and Radiation-Output Control of Continuous and Pulsed Gyrotrons
The results of experimental investigation into the dielectric losses in GaAs, InP:Fe, and Si semiconductor crystals in the millimeter wavelength range (80–260 GHz) using the original precise method of measuring the reflectance and dielectric-loss tangent tanδ based on open high-quality Fabry–Perot c...
Saved in:
Published in: | Semiconductors (Woodbury, N.Y.) N.Y.), 2020-09, Vol.54 (9), p.1069-1074 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The results of experimental investigation into the dielectric losses in GaAs, InP:Fe, and Si semiconductor crystals in the millimeter wavelength range (80–260 GHz) using the original precise method of measuring the reflectance and dielectric-loss tangent tanδ based on open high-quality Fabry–Perot cavities are presented. It is shown that the losses in the frequency range from 100 to 260 GHz in ultrapure semiconductor single-crystal GaAs substrates are mainly determined by lattice absorption, while the main loss mechanism in single-crystal silicon is absorption by free carriers; herewith, tan δ ≈ (1–2) × 10
–4
even for a noticeable, at a level of 10
12
cm
–3
, free carrier concentration. In contrast with GaAs and Si, tanδ in compensated InP:Fe crystals is almost independent of frequency in the range from 100 to 260 GHz, which is associated with the material conductivity and optimization of microwave semiconductor devices, in particular, frequency-multiplication devices and devices of the controlled emission output of continuous and pulsed gyrotrons. |
---|---|
ISSN: | 1063-7826 1090-6479 |
DOI: | 10.1134/S1063782620090195 |