Loading…
Methodology for failure mode prediction of onshore buried steel pipelines subjected to reverse fault rupture
Oil and gas buried steel pipelines are vulnerable to permanent ground displacements, such as those resulting from tectonic fault activation. The dominant failure mechanism is strongly dependent on the type of faulting. The more complex case is the reverse fault type because the crossing pipeline is...
Saved in:
Published in: | Soil dynamics and earthquake engineering (1984) 2020-08, Vol.135, p.106116, Article 106116 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-ba91c85588f7673abe7dbcca1d62e049e6a33ebb4525b976b9e605fcf710c33d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-ba91c85588f7673abe7dbcca1d62e049e6a33ebb4525b976b9e605fcf710c33d3 |
container_end_page | |
container_issue | |
container_start_page | 106116 |
container_title | Soil dynamics and earthquake engineering (1984) |
container_volume | 135 |
creator | Melissianos, Vasileios E. Vamvatsikos, Dimitrios Gantes, Charis J. |
description | Oil and gas buried steel pipelines are vulnerable to permanent ground displacements, such as those resulting from tectonic fault activation. The dominant failure mechanism is strongly dependent on the type of faulting. The more complex case is the reverse fault type because the crossing pipeline is significantly compressed and bent and consequently, it may fail due to local buckling, upheaval buckling or tensile weld fracture. Which among those failure modes will be critical, depends on a set of parameters, comprising fault crossing geometry, diameter to thickness ratio (D/t) of the pipeline, pipeline steel grade, and backfill soil properties. An extensive parametric study is carried out, followed by statistical processing of the results in order to formulate simplified statistical models for the prediction of the predominant failure mode according to criteria set by the American Lifelines Alliance and EN 1998-4 standards. The study thus offers the first comprehensive attempt to quantify the qualitative criterion that deeply buried pipes with high D/t ratio tend to buckle locally, while shallowly buried pipes with low D/t ratio tend to buckle globally. Pipe designers may use the provided expressions to predict the predominant failure mode in order to either apply the necessary seismic countermeasures or re-design the pipeline if necessary.
•Buried steel pipelines under reverse faulting are numerically analyzed.•Different code-based criteria are used to determine the predominant failure mode.•Fault crossing geometry, steel grade, and soil type are the parameters affecting response.•A statistical model is developed to predict the expected failure mode without advanced analyses. |
doi_str_mv | 10.1016/j.soildyn.2020.106116 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440939972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0267726119314137</els_id><sourcerecordid>2440939972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-ba91c85588f7673abe7dbcca1d62e049e6a33ebb4525b976b9e605fcf710c33d3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BCHguWuStkl7Eln8ghUvCt5Ck0zdlG5Tk3Rh_71ZundPAzPvPMM8CN1SsqKE8vtuFZztzWFYMcKOPU4pP0MLWok6ywv6fY4WhHGRCcbpJboKoSOEClrxBerfIW6dcb37OeDWedw2tp884J0zgEcPxupo3YBdi90Qti6N1OQtGBwiQI9HO0JvBwg4TKoDHdMkOuxhDz5Awk19xH4aY4Jeo4u26QPcnOoSfT0_fa5fs83Hy9v6cZPpPBcxU01NdVWWVdUKLvJGgTBK64YazoAUNfAmz0GpomSlqgVXqUPKVreCkkQw-RLdzdzRu98JQpSdm_yQTkpWFKTO61qwlCrnlPYuBA-tHL3dNf4gKZFHsbKTJ7HyKFbOYtPew7wH6YW9BS-DtjDopMqn_6Vx9h_CHxSjhw4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440939972</pqid></control><display><type>article</type><title>Methodology for failure mode prediction of onshore buried steel pipelines subjected to reverse fault rupture</title><source>Elsevier</source><creator>Melissianos, Vasileios E. ; Vamvatsikos, Dimitrios ; Gantes, Charis J.</creator><creatorcontrib>Melissianos, Vasileios E. ; Vamvatsikos, Dimitrios ; Gantes, Charis J.</creatorcontrib><description>Oil and gas buried steel pipelines are vulnerable to permanent ground displacements, such as those resulting from tectonic fault activation. The dominant failure mechanism is strongly dependent on the type of faulting. The more complex case is the reverse fault type because the crossing pipeline is significantly compressed and bent and consequently, it may fail due to local buckling, upheaval buckling or tensile weld fracture. Which among those failure modes will be critical, depends on a set of parameters, comprising fault crossing geometry, diameter to thickness ratio (D/t) of the pipeline, pipeline steel grade, and backfill soil properties. An extensive parametric study is carried out, followed by statistical processing of the results in order to formulate simplified statistical models for the prediction of the predominant failure mode according to criteria set by the American Lifelines Alliance and EN 1998-4 standards. The study thus offers the first comprehensive attempt to quantify the qualitative criterion that deeply buried pipes with high D/t ratio tend to buckle locally, while shallowly buried pipes with low D/t ratio tend to buckle globally. Pipe designers may use the provided expressions to predict the predominant failure mode in order to either apply the necessary seismic countermeasures or re-design the pipeline if necessary.
•Buried steel pipelines under reverse faulting are numerically analyzed.•Different code-based criteria are used to determine the predominant failure mode.•Fault crossing geometry, steel grade, and soil type are the parameters affecting response.•A statistical model is developed to predict the expected failure mode without advanced analyses.</description><identifier>ISSN: 0267-7261</identifier><identifier>EISSN: 1879-341X</identifier><identifier>DOI: 10.1016/j.soildyn.2020.106116</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Backfill ; Buckling ; Buried pipeline ; Buried pipes ; Diameters ; Failure mechanisms ; Failure modes ; Gas pipelines ; Mathematical models ; Natural gas ; Numerical model ; Petroleum pipelines ; Pipeline design ; Pipelines ; Reverse fault rupture ; Simplified expressions ; Soil properties ; Statistical analysis ; Statistical models ; Steel ; Steel pipes ; Structural steels ; Tectonics ; Thickness ratio</subject><ispartof>Soil dynamics and earthquake engineering (1984), 2020-08, Vol.135, p.106116, Article 106116</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-ba91c85588f7673abe7dbcca1d62e049e6a33ebb4525b976b9e605fcf710c33d3</citedby><cites>FETCH-LOGICAL-c337t-ba91c85588f7673abe7dbcca1d62e049e6a33ebb4525b976b9e605fcf710c33d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Melissianos, Vasileios E.</creatorcontrib><creatorcontrib>Vamvatsikos, Dimitrios</creatorcontrib><creatorcontrib>Gantes, Charis J.</creatorcontrib><title>Methodology for failure mode prediction of onshore buried steel pipelines subjected to reverse fault rupture</title><title>Soil dynamics and earthquake engineering (1984)</title><description>Oil and gas buried steel pipelines are vulnerable to permanent ground displacements, such as those resulting from tectonic fault activation. The dominant failure mechanism is strongly dependent on the type of faulting. The more complex case is the reverse fault type because the crossing pipeline is significantly compressed and bent and consequently, it may fail due to local buckling, upheaval buckling or tensile weld fracture. Which among those failure modes will be critical, depends on a set of parameters, comprising fault crossing geometry, diameter to thickness ratio (D/t) of the pipeline, pipeline steel grade, and backfill soil properties. An extensive parametric study is carried out, followed by statistical processing of the results in order to formulate simplified statistical models for the prediction of the predominant failure mode according to criteria set by the American Lifelines Alliance and EN 1998-4 standards. The study thus offers the first comprehensive attempt to quantify the qualitative criterion that deeply buried pipes with high D/t ratio tend to buckle locally, while shallowly buried pipes with low D/t ratio tend to buckle globally. Pipe designers may use the provided expressions to predict the predominant failure mode in order to either apply the necessary seismic countermeasures or re-design the pipeline if necessary.
•Buried steel pipelines under reverse faulting are numerically analyzed.•Different code-based criteria are used to determine the predominant failure mode.•Fault crossing geometry, steel grade, and soil type are the parameters affecting response.•A statistical model is developed to predict the expected failure mode without advanced analyses.</description><subject>Backfill</subject><subject>Buckling</subject><subject>Buried pipeline</subject><subject>Buried pipes</subject><subject>Diameters</subject><subject>Failure mechanisms</subject><subject>Failure modes</subject><subject>Gas pipelines</subject><subject>Mathematical models</subject><subject>Natural gas</subject><subject>Numerical model</subject><subject>Petroleum pipelines</subject><subject>Pipeline design</subject><subject>Pipelines</subject><subject>Reverse fault rupture</subject><subject>Simplified expressions</subject><subject>Soil properties</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Steel</subject><subject>Steel pipes</subject><subject>Structural steels</subject><subject>Tectonics</subject><subject>Thickness ratio</subject><issn>0267-7261</issn><issn>1879-341X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BCHguWuStkl7Eln8ghUvCt5Ck0zdlG5Tk3Rh_71ZundPAzPvPMM8CN1SsqKE8vtuFZztzWFYMcKOPU4pP0MLWok6ywv6fY4WhHGRCcbpJboKoSOEClrxBerfIW6dcb37OeDWedw2tp884J0zgEcPxupo3YBdi90Qti6N1OQtGBwiQI9HO0JvBwg4TKoDHdMkOuxhDz5Awk19xH4aY4Jeo4u26QPcnOoSfT0_fa5fs83Hy9v6cZPpPBcxU01NdVWWVdUKLvJGgTBK64YazoAUNfAmz0GpomSlqgVXqUPKVreCkkQw-RLdzdzRu98JQpSdm_yQTkpWFKTO61qwlCrnlPYuBA-tHL3dNf4gKZFHsbKTJ7HyKFbOYtPew7wH6YW9BS-DtjDopMqn_6Vx9h_CHxSjhw4</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Melissianos, Vasileios E.</creator><creator>Vamvatsikos, Dimitrios</creator><creator>Gantes, Charis J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KL.</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>202008</creationdate><title>Methodology for failure mode prediction of onshore buried steel pipelines subjected to reverse fault rupture</title><author>Melissianos, Vasileios E. ; Vamvatsikos, Dimitrios ; Gantes, Charis J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-ba91c85588f7673abe7dbcca1d62e049e6a33ebb4525b976b9e605fcf710c33d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Backfill</topic><topic>Buckling</topic><topic>Buried pipeline</topic><topic>Buried pipes</topic><topic>Diameters</topic><topic>Failure mechanisms</topic><topic>Failure modes</topic><topic>Gas pipelines</topic><topic>Mathematical models</topic><topic>Natural gas</topic><topic>Numerical model</topic><topic>Petroleum pipelines</topic><topic>Pipeline design</topic><topic>Pipelines</topic><topic>Reverse fault rupture</topic><topic>Simplified expressions</topic><topic>Soil properties</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Steel</topic><topic>Steel pipes</topic><topic>Structural steels</topic><topic>Tectonics</topic><topic>Thickness ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melissianos, Vasileios E.</creatorcontrib><creatorcontrib>Vamvatsikos, Dimitrios</creatorcontrib><creatorcontrib>Gantes, Charis J.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Soil dynamics and earthquake engineering (1984)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melissianos, Vasileios E.</au><au>Vamvatsikos, Dimitrios</au><au>Gantes, Charis J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methodology for failure mode prediction of onshore buried steel pipelines subjected to reverse fault rupture</atitle><jtitle>Soil dynamics and earthquake engineering (1984)</jtitle><date>2020-08</date><risdate>2020</risdate><volume>135</volume><spage>106116</spage><pages>106116-</pages><artnum>106116</artnum><issn>0267-7261</issn><eissn>1879-341X</eissn><abstract>Oil and gas buried steel pipelines are vulnerable to permanent ground displacements, such as those resulting from tectonic fault activation. The dominant failure mechanism is strongly dependent on the type of faulting. The more complex case is the reverse fault type because the crossing pipeline is significantly compressed and bent and consequently, it may fail due to local buckling, upheaval buckling or tensile weld fracture. Which among those failure modes will be critical, depends on a set of parameters, comprising fault crossing geometry, diameter to thickness ratio (D/t) of the pipeline, pipeline steel grade, and backfill soil properties. An extensive parametric study is carried out, followed by statistical processing of the results in order to formulate simplified statistical models for the prediction of the predominant failure mode according to criteria set by the American Lifelines Alliance and EN 1998-4 standards. The study thus offers the first comprehensive attempt to quantify the qualitative criterion that deeply buried pipes with high D/t ratio tend to buckle locally, while shallowly buried pipes with low D/t ratio tend to buckle globally. Pipe designers may use the provided expressions to predict the predominant failure mode in order to either apply the necessary seismic countermeasures or re-design the pipeline if necessary.
•Buried steel pipelines under reverse faulting are numerically analyzed.•Different code-based criteria are used to determine the predominant failure mode.•Fault crossing geometry, steel grade, and soil type are the parameters affecting response.•A statistical model is developed to predict the expected failure mode without advanced analyses.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.soildyn.2020.106116</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0267-7261 |
ispartof | Soil dynamics and earthquake engineering (1984), 2020-08, Vol.135, p.106116, Article 106116 |
issn | 0267-7261 1879-341X |
language | eng |
recordid | cdi_proquest_journals_2440939972 |
source | Elsevier |
subjects | Backfill Buckling Buried pipeline Buried pipes Diameters Failure mechanisms Failure modes Gas pipelines Mathematical models Natural gas Numerical model Petroleum pipelines Pipeline design Pipelines Reverse fault rupture Simplified expressions Soil properties Statistical analysis Statistical models Steel Steel pipes Structural steels Tectonics Thickness ratio |
title | Methodology for failure mode prediction of onshore buried steel pipelines subjected to reverse fault rupture |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methodology%20for%20failure%20mode%20prediction%20of%20onshore%20buried%20steel%20pipelines%20subjected%20to%20reverse%20fault%20rupture&rft.jtitle=Soil%20dynamics%20and%20earthquake%20engineering%20(1984)&rft.au=Melissianos,%20Vasileios%20E.&rft.date=2020-08&rft.volume=135&rft.spage=106116&rft.pages=106116-&rft.artnum=106116&rft.issn=0267-7261&rft.eissn=1879-341X&rft_id=info:doi/10.1016/j.soildyn.2020.106116&rft_dat=%3Cproquest_cross%3E2440939972%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-ba91c85588f7673abe7dbcca1d62e049e6a33ebb4525b976b9e605fcf710c33d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2440939972&rft_id=info:pmid/&rfr_iscdi=true |