Loading…

Neutron star as a mirror for gravitational waves

Gravitational wave (GW) has become one of the most active fields in physics and astronomy since the first direct detection of GW event in 2015. As is well known, multiple images of GW events are possible through the gravitational lenses. Here, we propose a novel mirror imaging mechanism for GW event...

Full description

Saved in:
Bibliographic Details
Published in:Astrophysics and space science 2020-09, Vol.365 (9), Article 148
Main Authors: Wei, Hao, Qiang, Da-Chun, Yu, Zhong-Xi, Deng, Hua-Kai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gravitational wave (GW) has become one of the most active fields in physics and astronomy since the first direct detection of GW event in 2015. As is well known, multiple images of GW events are possible through the gravitational lenses. Here, we propose a novel mirror imaging mechanism for GW events different from the gravitational lens. In the literature, the superconductor was predicted to be highly reflective mirror for GWs. It is well known that neutron stars exhibit superconductivity and superfluidity. In this work, we predict that there are two types of GW mirror imaging phenomena caused by the neutron star located in Milky Way or the same host galaxy of GW source, which might be detected within a life period of man (namely the time delay Δ t can be a few years to a few tens of years). It is expected to witness this predicted GW mirror imaging phenomenon in the near future. In the long term, the observations of this novel GW mirror imaging phenomenon might help us to find numerous neutron stars unseen by other means, and learn more about the complicated internal structures of neutron stars, as well as their equations of state.
ISSN:0004-640X
1572-946X
DOI:10.1007/s10509-020-03863-w