Loading…
Simultaneous Removal of Hexane and Ethanol from Air in a Biotrickling Filter—Process Performance and Monitoring Using Electronic Nose
Biofiltration is a well-accepted method for the removal of malodorous compounds from air streams. Interestingly, the mechanisms underlying this process are not fully understood. The aim of this paper was to investigate the simultaneous removal of hydrophobic hexane with hydrophilic ethanol, resultin...
Saved in:
Published in: | Sustainability 2020-01, Vol.12 (1), p.387 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Biofiltration is a well-accepted method for the removal of malodorous compounds from air streams. Interestingly, the mechanisms underlying this process are not fully understood. The aim of this paper was to investigate the simultaneous removal of hydrophobic hexane with hydrophilic ethanol, resulting in the enhanced removal of hexane in the presence of ethanol. Investigations were performed in a peat-perlite packed biotrickling filter and the process performance was monitored using both gas chromatography and electronic nose techniques. The results indicate that the length as well as the efficiency of biofiltration during the start-up period depend on the feed composition, with higher efficiency obtained when hexane and ethanol were fed together from the process initiation. The experiments in the steady-state period present the biofilter performance when different ratios of hydrophilic to hydrophobic compounds were fed to the biofilter. The obtained results show the synergistic effects of the addition of a hydrophilic compound on the removal efficiency of hydrophobic hexane. The influence of the ratio of hydrophilic to hydrophobic compounds is discussed in terms of enhancing the mass transfer phenomena for hydrophobic volatile organic compounds. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su12010387 |