Loading…
Knowledge graph entity typing via learning connecting embeddings
Knowledge graph (KG) entity typing aims at inferring possible missing entity type instances in KG, which is a very significant but still under-explored subtask of knowledge graph completion. In this paper, we propose a novel approach for KG entity typing which is trained by jointly utilizing local t...
Saved in:
Published in: | Knowledge-based systems 2020-05, Vol.196, p.105808, Article 105808 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Knowledge graph (KG) entity typing aims at inferring possible missing entity type instances in KG, which is a very significant but still under-explored subtask of knowledge graph completion. In this paper, we propose a novel approach for KG entity typing which is trained by jointly utilizing local typing knowledge from existing entity type assertions and global triple knowledge in KGs. Specifically, we present two distinct knowledge-driven effective mechanisms of entity type inference. Accordingly, we build two novel embedding models to realize the mechanisms. Afterward, a joint model via connecting them is used to infer missing entity type instances, which favors inferences that agree with both entity type instances and triple knowledge in KGs. Experimental results on two real-world datasets (Freebase and YAGO) demonstrate the effectiveness of our proposed mechanisms and models for improving KG entity typing. |
---|---|
ISSN: | 0950-7051 1872-7409 |
DOI: | 10.1016/j.knosys.2020.105808 |